
Technische Universität München

Fakultät für Informatik

Master’s Thesis in Computer Science

Design of a Framework for Side-

Channel Attacks on RFID-Tags

Entwicklung eines Frameworks für

Seitenkanalangriffe auf RFID-Tags

Author: Hagen Fritsch

Supervisor: Prof. Dr. Claudia Eckert

Advisors: Dipl.-Inf. Daniel Angermeier
Benedikt Heinz

Submission Date: 12. November 2010

Abstract

RFID systems are not yet typical targets for side-channel attacks, although they are just
as likely vulnerable as their contact-based counterparts. Based on a real world scenario, a
framework to assist execution of such attacks on RFID systems is developed resulting in a
powerful and versatile framework that is already used to analyze the results of basic measure-
ment setups. These results are sufficient to reveal concrete power traces, but due to deficient
measurement setups, power analysis attacks were impossible. However, measurement setups
were not part of the thesis and the functionality of the framework could be successfully ver-
ified using simulated traces. These also yielded requirements for such measurement setups
in which the carrier impact needs to be drastically reduced in order to allow any practical
DPA attack. Such a setup seems however practical and future work is likely to show such
attacks.

Zusammenfassung

RFID-Systeme waren bisher kein typisches Ziel für Seitenkanalangriffe, obwohl sie dafür
vermutlich genauso anfällig sind, wie ihre kontaktbasierten Pendants. Anhand eines realen
Szenarios entstand im Rahmen dieser Arbeit ein leistungsstarkes und vielseitiges Frame-
work zur Unterstützung der Durchführung solcher Angriffe auf RFID-Systeme. Es wurde
bereits zur Analyse von Aufzeichnungen einfacher Messaufbauten eingesetzt und die da-
raus gewonnenen Ergebnisse reichen aus, um konkrete Stromprofile aufzudecken. Auf-
grund der mangelhaften Messaufbauten, die jedoch nicht Teil dieser Arbeit waren, waren
Stromverbrauchsanalyse-Angriffe unmöglich. Die Funktionalität des Frameworks konnte
allerdings mittels simulierter Stromprofil-Traces erfogreich verifiziert werden. Diese ergaben
darüber hinaus Anforderungen an Messaufbauten für derartige Angriffe: Um überhaupt
einen praktischen DPA Angriff zuzulassen, müsste der Einfluss des Trägersignals in den
Aufzeichnungen drastisch reduziert werden. Solch ein Messaufbau erscheint allerdings dur-
chaus realistisch, weswegen zukünftige Arbeiten zu dem Thema sicherlich solche Angriffe
aufzeigen werden.

ii

CONTENTS

1. Thematic introduction 1
1.1. Methodology . 1
1.2. Overview . 2

2. Side-Channel Attacks 3
2.1. Timing Analysis . 3
2.2. Power Analysis . 4

2.2.1. The power model . 4
2.2.2. Simple Power Analysis . 5
2.2.3. Differential Power Analysis . 6
2.2.4. Countermeasures . 9

2.3. Hypothesis Generation . 10

3. RFID 13
3.1. Overview . 13
3.2. Communication and Powering . 13
3.3. Modulation and Transmission Protocols . 14

3.3.1. ISO 14443 . 15

4. Framework Implementation 17
4.1. Workflow Overview . 17
4.2. Preprocessing Toolsuite and Visualisation . 18

4.2.1. Requirements . 18
4.2.2. Rasterization / Alignment . 19
4.2.3. Analysis and normalization . 19
4.2.4. Average and Variance Graphs . 20
4.2.5. Simple Filters . 20
4.2.6. FFT filters . 21

4.3. Correlation . 21
4.4. Framework Architecture . 22

4.4.1. Type Independence . 23
4.4.2. Implementation . 23
4.4.3. Correlation Workflow . 24
4.4.4. Highlevel Workflow . 24

5. Preparation 25
5.1. Tool Selection . 25
5.2. Attack Targets . 25

iii

5.3. Target Protocols . 27
5.3.1. Mifare DESFire . 27
5.3.2. Mifare Classic . 31
5.3.3. JCOP . 32

6. Experiments and Results 33
6.1. Timing Experiments . 33
6.2. Measurement Setup Overview . 33
6.3. Target Protocols and Trigger Placement . 34

6.3.1. Mifare Classic . 34
6.3.2. Mifare DESFire . 34
6.3.3. JCOP . 35

6.4. Measurements . 35
6.4.1. Preprocessing steps . 35
6.4.2. Differential Probe . 36
6.4.3. Simple Coil Probe . 36
6.4.4. Differential Probe at Smartcard’s Antenna 37
6.4.5. Local EM Probe . 38
6.4.6. Comparison Experiment . 39
6.4.7. Simulated Experiments . 40

6.5. Future Experiment Ideas . 42

7. Closeup 43
7.1. Toolsuite Evaluation . 43
7.2. DPA Attacks on RFID in Practice . 44

List of Figures 45

Bibliography 47

A. Framework Documentation (Excerpt) 49
A.1. Preprocessor . 49
A.2. Correlation . 53
A.3. Workflow . 54
A.4. Processors . 54

iv

CHAPTER

ONE

THEMATIC INTRODUCTION

Nowadays, RFID systems are known to almost everyone. With the variety of possible appli-
cations, these systems have invaded our lives, with most people carrying multiple smartcards
with them, many of which are already contactless smartcards based on RFID technology.
With the advance of these technologies, they also become interesting for attackers and with-
standing attacks becomes a crucial property. In the past years, numerous RFID systems have
been misused or their security has been broken or weakened, because of a lack of awareness
or the use of homebrew cryptosystems with serious vulnerabilities. For example, the Hitag2
system has been broken in 2009a due to weaknesses in the cipher’s initialization (Plötz and
Nohl, 2009a). The Mifare classic system has been broken due to a too simple cipher and
several architectural mistakes (Garcia et al., 2008; de Koning Gans et al., 2008). The Legic
Prime family of RFID cards features a proprietary protocol with a cipher that can only be
regarded as obfuscation, because the key is sent unencrypted over the air interface after the
activation of the card (Plötz and Nohl, 2009b). Research is ongoing and as RFID cards are
attractive targets, more protocols will be revealed and further flawed crypto systems will be
broken. However, manufacturers learned from past mistakes and are now producing chips
with more modern cryptography. This is possible due to advances in semiconductor manu-
facturing processes that nowadays allow to build gates in much smaller structures consuming
less power. Consequently more gates can be put on a smartcard’s microchip, allowing for
the modern cryptography that was earlier infeasible on such systems.

Besides mathematical analysis, it is already known for a long time, that systems can be
breached using side-channel attacks. Most prominent of those are differential power analysis
attacks, which are very powerful and are already known to easily reveal the key of unpro-
tected contact-based smartcards, even if modern cryptographic algorithms are used. These
attacks have typically been conducted by measuring the power consumption of the device
in question. Applying DPA attacks to RFID systems is a relatively new concept, although
only a logical consequence. However, it is inequally harder to do so, as the contactless
smartcards are passively powered, so that measurements of the power consumption are not
directly possible. Therefore this thesis’ task is to develop a framework to aid preprocessing,
analysis and visualization of the recorded traces. Furthermore the framework can assist in
the investigation of possible measurement setups and evaluation of their quality, but the
development and improvement of such measurement setups are outside this thesis’ scope.

1.1. Methodology

In order to acquire detailed knowledge on the requirements for the framework, it is part of
this thesis’ task to run a real world scenario. Several attack targets will be chosen for the
execution of experiments. The optimal goal would be to run a set of measurement and use

1

the workflow model of the framework to break a target’s cryptographic key. A couple of
tools were already available for preprocessing or analysis that were previously used in wired
DPA scenarios. It is thus expected to evaluate the usefulness and practicability of these
tools and to record the requirements for new tools or workflows if necessary.

It is assumed that the power analysis measurement setup needs to be tuned in order to get
the best results. As such, several measurement runs with possible different setups have to
be executed and their results have to be analyzed, compared and visualized, all of which
are tasks the framework shall be capable of, at least in assisting the workflow to reduce the
manual work to a minimum. These tasks will show the usefulness of the framework and put
it under real test conditions.

Several preprocessing steps will be tried, to find out, how to yield the most relevant in-
formation for power analysis attacks. In order to actually run an attack, correlations for
plain- and ciphertexts will be calculated to locate interesting points in the power traces. A
visual inspection for cryptographic patterns might aid this process. Finally it was planned
to generate hypothesis on the very implementation of the cipher, which would eventually
lead to the revelation of the card’s secret key. However, this could not be achieved, due to
the lack of quality in the available measurement setups in which none of trace recordings
contained enough usable information to perform such an attack.

1.2. Overview

The thesis is divided into six chapters. This first chapter serves as an introductory chapter.
The second and third chapter build the theoretical block discussing side-channel attacks and
giving an overview on the relevant aspects of RFID systems. In Chapter 4, a typical attack
workflow is described together with discussions and descriptions of the actual implementation
of the framework-specific parts of such a workflow and its functionality. More prerequisites
needed for the implementation of the framework and most importantly the surrounding
test environment for the actual attacks such as the protocols involved, follow in Chapter
5. Eventually, Chapter 6 describes the measurement setups and the conducted experiments,
together with their results and an evaluation, which is continued in the last chapter rounding
up the thesis with further ideas.

2

CHAPTER

TWO

SIDE-CHANNEL ATTACKS

Despite the possible provable security of a cipher or protocol, its actual implementation
might still be subject to attacks based on leaked side-channel information. Side-channels
were often overseen in the past due to a lack of awareness and their relationship on different
layers of a security system involving both hardware and software, i.e. parts that are usually
engineered by different people (Kocher et al., 1999). Closed systems such as smart cards,
whether contactless or not, may leak information about the operations or the processed data
on side-channels. The most popular and easily exploited of these side-channels are the time
passed during the execution of an operation on the device as well as the power consumption
or electromagnetic radiation during such an operation. The next sections introduce these
side-channels and their exploits to provide a basic understanding for the attacks and analysis
capabilities that the framework will need to support and which will eventually be run against
RFID tags during the experimental part of this thesis.

2.1. Timing Analysis

Operations executed by a device might differ in their execution time due to a variety of
reasons (Kocher, 1996). The most obvious one is found in the software layer: data dependent
conditional operations. However, underlying layers such as caches or the actual hardware
impose even more differences, of which the software engineer might not be aware. CPU
instructions often take varying amounts of time for different operations or even have data
dependent runtimes, as it is the case for operations that terminate early if one operand is
zero.

A typical example for an attack that exploits different runtimes can be found for password
protected devices that use a strcmp call to check the password. As the function returns as
soon as the first character mismatch is found, the timing of this operation is dependent on
the number of correct characters. As such, the brute-force range for a n byte password can
be reduced from 256n to 256 · n since one will notice a different timing as soon as one tries
a password that starts with the right character.

Countermeasures are easily implemented by making sure, that the runtime of the function
is always the same. For the above example, a fixed strcmp function would compare all
characters of the string, thus taking the same time no matter how many characters match.

One might assume that timing attacks only work for these straightforward bugs, but are not
as relevant for real systems. This is however not the case: More complex attacks will exploit
data-dependent execution times that only leak fuzzy information such as the hamming weight
of a key using differential attack styles that will be described in Section 2.2.3 in the context
of differential power analysis. Timing vulnerabilities were found in implementations of all

3

major crypto systems (e.g. Kocher, 1996; Schindler, 2000) and thus have to be taken seriously,
especially as they can be exploited without any special or expensive equipment. However, as
these attacks are well known and countermeasures are easy and cheap to implement, modern
security devices are unlikely to leak any exploitable information in the timing domain. Still,
several experiments will be conducted in the experimental part of this thesis (Section 6.1)
to verify this assumption.

2.2. Power Analysis

When processing data, a microchip consumes power. As one can probably guess, this power
consumption depends on the kind of operations executed and on the data processed by the
device. For now it shall be assumed, that the operation-specific power consumption accounts
for the major part, while processed data just slightly influences the whole power consumption.
A more detailed background describing these dependencies will be given in Section 2.2.1. Due
to the operation-specific power consumption, it is often possible to recognize algorithmic
states (e.g. rounds in a block-cipher) or even single operations, just by visually inspecting a
power trace, i.e. a recording of the power consumption of a device for a certain operation.

Figure 2.1.: Power profile of a AES encryption performed by a microcontroller (Mangard
et al., 2007)

As an illustration, Figure 2.1 shows the power trace of an AES-128 operation, in which the
ten rounds of the cipher are distinguishable at a closer look.

Since the processing of power traces is one of the most important functions of the framework,
foundations and attacks will be detailed in the following sections.

2.2.1. The power model

In order to understand assumptions made on the power consumption, it is crucial to model
it, based on the actual hardware design involved. Almost every microchip relies on CMOS
logic which consists of cells made up of transistors. Each calculation is a state-change in the
microchip and each change in a transistor’s state consumes power since capacitors in the
wiring are charged or discharged. Additionally, shortcut currents may flow for a short time
in a transistor network transition. See Mangard et al. (2007) for further details on currents
and noise sources.

4

Since attackers do not normally have access to a chip’s netlist, they work with extremely
simplified power models. A very simple model would be to assume, that the power consump-
tion is proportional to the number of transistor transitions. This already disregards a wide
variety of effects, such as different lengths of wiring and therefore its different capacities, but
also that a transition from 0 to 1 consumes the same amount of energy as its counterpart.
Despite its huge amount of inaccuracy, this power model is already very powerful and de-
scribes power traces fairly well. But still, attackers do not have a detailed knowledge about
the transistors on the chip. They can however already distinguish operations to a great
amount of detail, since the number of transistors transitions depends very much on the type
of operation executed. Operations that take several clock cycles can thus be recognized by
a distinguishable pattern (see Figure 2.1), which is the basis for the simple power analysis
attacks described in Section 2.2.2.

Unfortunately for the attacker, data dependencies are not as clearly visible and other forms
of attacks are required. Depending on the hardware implementation of the chip, different
power models may apply for data dependent information. A typical one bit register will only
consume power if a transition occurs. As such, a commonly used power model for registers is
the hamming distance of two values, which counts the number of bits in which these values
differ. If the new value is loaded into the register, only bits that are different from the
original value will induce a state change and therefore only these will consume power.

Additionally in microcontrollers, data buses often use precharge logic in which the power
consumption is dependent on the hamming weight of a value (i.e. the number of bits that are
1). Section 2.2.3 shows how these minimal information leaks can be exploited in differential
power analysis attacks which are one of the key applications of the framework.

2.2.2. Simple Power Analysis

Historically, simple power analysis (SPA) has been developed before differential power anal-
ysis and its usages and applications are limited today. However, SPA serves as a good
example to illustrate the severe impact that a clearly readable power profile might have on
the security of a device. It also shows why data dependent analysis is much more difficult
and motivates the more advanced differential attacks.

Typically, the attacker’s goal is to extract the secret key of a device. In an optimal scenario,
the power consumption at a certain moment in time would dependent on a key-bit and the
attacker could distinguish the bit by looking at the trace. This is usually not possible, since
the data-dependent power consumption is much less distinguishable than the operation-
specific part (see Section 2.2.1). Additionally, the key-bits are usually not processed alone
but in combinations of bytes or words and several noise sources complicate measurements
even more. However, in algorithms that perform conditional operations based on secrets, it
may very well be possible to distinguish patterns in the power trace and to reconstruct the
key. This kind of attack is known as simple power analysis. A well known victim of such
a type of attack is the square-and-multiply algorithm (Kocher et al., 1999), as it is used in
modulo exponentiation such as in RSA (Messerges et al., 1999), but the basic principle also
applies to similar algorithms such as the double-and-add version found in ECC (Caron, 1999).
In RSA, an operand is either squared (key bit is 0) or squared and multiplied with another
value (key bit is 1) based on some key information. The operations deal with large integers
and have a distinguishable power profile, since their processing is split over many clock
cycles. Consequently the power trace reveals the order of operations performed (see Figure
2.2). As each time an multiplication is performed (in addition to the squaring operation)
corresponds to a 1 bit in the key and each omission of the multiplication corresponds to a

5

S S M S S M S S S S S S S M S S M S S M S S S M S S M S M S M S S M S S S M S M S M

0 1 0 1 000000 1 0 1 0 1 00 1 0 1 1 1 0 1 00 1 1 1

Figure 2.2.: Power profile of distinguishable square (S) and multiply (M) operations (based
on Rohatgi, 2010)

0 bit, an attacker is likely able to reconstruct the entire secret key by visually inspecting a
single power trace.

If a simple distinction is not possible because of noise, the attacker might still be able to run
several measurements with the same data and reduce the noise by averaging the traces.

2.2.3. Differential Power Analysis

In order to attack data dependent power consumption, other means of analysis are required.
Technically, differential power analysis (DPA) works by using statistical methods on numer-
ous measurements to confirm or reject a certain hypothesis. Such a hypothesis is typically:
key bit n is 1.

DPA attacks are extremely powerful and even work on very noisy recordings, which is why
they are the most popular type of power analysis attacks (Mangard et al., 2007) and the most
likely one to be used in RFID side-channel analysis as well. Consequently, functionality to
support and perform DPA attacks are the core of the framework. This section will describe
the most important principles of DPA attacks in more detail.

Notation: Conforming with Mangard et al. (2007), the following notation is used. The
attacker records a set of traces ti = (ti,1, . . . , ti,T) with ti being the ith trace recorded and T
denoting the total trace length. For each trace, the device is fed with some known input data
d = (d1, . . . , dD) (or some known data is read from the device) where again di corresponds
to the ith trace recording i.e. to ti. Accordingly, D refers to the total number of traces.

For example assume, that a device processes a bit of input data di at a certain time-offset j.
A hypothetic power consumption would be, that the device consumes slightly more power if
the bit is 1. In DPA scenarios, unknown components (such as the operation specific power
consumption or power consumptions of unknown data) are typically modeled as Gaussian
noise, thus a model for the power consumption could assume it to be proportional: ti,j ∼
di + Ni,j with the noise components of this trace Ni = (Ni,1, . . . , Ni,T), i.e. at offset j, the
average lim

D→∞
avg((N1,j , . . . , ND,j)) = c is constant.

By measuring the device process random data, the attacker can now build two sets of traces.
The first set will contain all traces in which the bit di is 0, thus its average (the infinity limes
is omitted from now on) avg(ti(di=0),o) = c1 is constant, while the average in the second set
will be another constant: avg(ti(di=1),j) = c1 + di with di being due to the model’s higher
power consumption if the bit is 1. Depending on the number of measurements, the Gaussian
noise component is reduced and consequently the two sets will have significantly different
averages for each offset j at which di or d−1i is processed. For the remaining offsets j′, it
holds that ti,j′ = Ni,j′ since no data dependent input is processed, thus the differences in
averages for these sets will be close to 0.

6

Kocher et al. (1999) note, that the two sets will only have the notable difference in their
averages, if they are divided according to the input data di. If one chooses a random set, the
average will approach the average for the whole set, e.g. avg((t1,j , . . . , tD,j) = c1 + 0.5 · di if
di = 1 is equally likely as di = 0.

This can be used to locate the time offsets at which the desired data is processed by the chip,
which is very useful in a profiling phase of an attack: interesting parts can be isolated and
the trace length can be minimized. In the beginning though, an attacker has only a general
idea at which point in time the operation happens. If the processed data is known and varies
for each measurement (e.g. some data produced by the device such as a random number or
a plaintext fed to the device) the attacker can formulate a hypothesis and using multiple
measurements she can brute force the time offset of the data’s processing by performing the
above steps. The result will be a graph showing the differences of the averages between the
two sets: (c1 + di)− (c1) = di. If the noise component is small enough, peaks in this graph
indicate processing of the desired data. In Section 2.3 it will be elaborated, how this generic
technique can further be used to attack the key of a cipher.

As the noise component for RFID traces will be rather high, it becomes interesting to
estimate the number of traces required to safely distinguish two such sets. Following Mangard
et al. (2007), this number depends on the sampling distribution of the average of the noise
component. In Section 2.2.3 a formal way to assess the verification will be shown. For now,
it can be noted, that the sampling distribution of the average of a normally distributed
random variable X ∼ N (µ, σ) is again normally distributed and can be estimated as follows:

E(X̄) = µ (2.1)

Var(X̄) =
σ2

n
(2.2)

An important consequence of Equation 2.2 is, that the variance can be lowered by increasing
the number of traces.

Correlation DPA

A more accurate way of evaluating hypothesis is the use of correlation instead of the
difference-of-means approach presented in the previous section. Using correlation, mod-
els are no further limited to binary ones, but also allow more complex models such as the
hamming weight or hamming distance of a byte or a word. These are very commonly used
models in power analysis attacks (see Section 2.2.1).

Correlation describes the degree of a linear connection between two vectors (e.g. the hypoth-
esis and the measured power consumption) and is invariant to scale and offsets of the input
vectors. As such, correlation is very well suited for these generic models and the analysis
of power traces under varying conditions. The correlation coefficient ρ is defined as follows
(Mangard et al., 2007), where hk = (hk,1, . . . , hk,D) denotes a vector of the hypothetical
power consumption and t is still the vector of the measured power consumptions with j
referencing the sample position (time offset) as defined in the previous section:

ρ(hk, t
′
j) = ρk,j =

cov(hk, t
′
j)√

Var(h) ·Var(t′j)

with : t′j : = (t1,j , . . . , tD,j)

The correlation coefficient will always be between −1 and 1, where values close to zero indi-
cate no correlation. In order to use correlation for attacks, hypothetical power consumptions

7

have to be calculated. This works similar to the difference-of-means method without the
limitation to a binary model. If the device performs some calculations on an 8-bit value, the
method of Section 2.2.3 can only ever locate one bit and thus has to deal with less exact val-
ues, as the noise component is stronger. Now, if a hamming-weight model can be assumed,
the calculation for the hamming weight of the input data and the actual power consumption
is calculated for each sample position of the traces, making use of all 8 bits. This again
produces a graph, in which all sample positions, that are uncorrelated to the input data are
close to 0. However, for positions that do process the input data, the correlation will be
higher. Figure 2.3 gives an example for such a graph.

Again, the quality of the correlation depends on the signal-to-noise ratio (SNR) of the
exploitable current pexp in the traces. According to Mangard et al. (2007), the SNR is
defined as follows:

SNR =
Var(pexp)

Var(pnoise)

Furthermore they establish the relationship to the correlation with the following equation:

ρ(hk, t
′
j) =

ρ(hk, texp
′
j)√

1 + 1
SNR

(2.3)

Equation 2.3 gives a hint about the implications of noise on the correlation coefficient. In
RFID contexts the noise component is usually very high, thus the SNR is very low. For such
SNR values below 1, the impact on the correlation is roughly affected by a factor of

√
SNR.

Consequently, halving the noise (i.e. the standard deviation σ of N (µ, σ)) quadruples the
SNR and thus doubles the correlation. But the opposite is true as well, putting RFID analysis
on very tough ground. In the experiments of Section 6.4.7 the effects will be demonstrated
exemplarily.

Hypothesis tests

In order to formally assess whether the results of difference-of-means or correlation are
significantly different from the difference that is introduced by noise, statistical hypothesis
tests can be applied. This is useful for automated verification of results. In short, this
allows to assess the results’ significance by verifying that it is very unlikely (e.g. less than
1% probability) that the mean’s differences or correlation are as large just by chance.

Following Mangard et al. (2007), a two-sided test can be used to assert whether the difference
of means lies in the critical region as given by the significance interval zα. Given the set
of hypothesis X and the set of samples Y , the test compares H0 : µX − µY = 0 to H1 :
µX − µY 6= 0. The hypothesis H0 is accepted if µX − µY is outside the critical region.
It is further concluded, that the number of traces needed to distinguish the means with a
confidence of 1− α is given by the following equation:

n = 4 · σ2

(µX − µY)2
· z21−α

A formula for assessing the required number of traces to significantly distinguish the corre-
lation ρ from a random correlation is given by:

n = 3 + 4 ·
z21−α/2

ln2 1+ρ
1−ρ

(2.4)

For small correlations as they are expected in DPA scenarios, the number of traces increases
approximately by a factor of 16 if the attainable correlation can be halved by design.

8

2.2.4. Countermeasures

While SPA attacks can already be prevented fairly easy by avoiding conditional branching
based on key material or intermediate values of the cipher (Kocher et al., 1999), it is unequally
harder to prevent DPA attacks. However, these measures exist and it is likely, that some of
them are being used to protect targets that are to be attacked by the framework. While it is
outside the framework’s scope to implement advanced methods that can be used to bypass
countermeasures, it is still important to understand these protection mechanisms and their
impact on the results attainable with aid of the framework. Of the variety of approaches that
exist to prevent DPA attacks, two important ones, Hiding and Masking, will be presented
in this section. Here, the designers goal is to make the operation dependent portions of a
power trace invisible (hiding) or unusable (masking).

As a consequence of Equation 2.4 and 2.3, the goal is to minimize the DPA attackable signal
while maximizing the noise, so that the correlation is lowered and the number of traces
required to successfully mount an attack gets very high (i.e. n > 106). Other measures like
modifying the protocol for frequent changes of keys may not always be applicable and are not
considered here, although those are capable of removing the DPA attack surface completely.

Hiding

As the name suggests, Hiding hides the power profile or data specific power consumption.
There is a variety of means to achieve this and research is ongoing. To hide a specific power
profile, two major approaches are available, which can also be combined to a certain degree:

Equal power consumption for all operations and data is very difficult to achieve, but still
there are means to make power consumption more equal. Such approaches modify the
underlying hardware layer. A famous example is dual rail logic, which is an extended
version of standard CMOS logic, carrying two lines for each bit, one with 0, the other
one with a 1. Each calculation or transition has thus to be executed on both lines
and therefore one of the lines will always draw current, whereas the other will not.
Consequently the power consumption is not directly dependent on the input value,
although still, hard to control physical effects such as wire capacities cause the power
to vary slightly. However, devices with this kind of logic are much harder to attack
and require significantly more effort. On the flip-side, the additional protection comes
at a price, since dual rail logic is more expensive, because it requires more space on
the chip and has a higher power consumption.

Artificial noise generated on the chip, for example by random additional calculations, de-
creases the SNR and thus makes attacks harder.

If the visible power profile can be hidden, both measures are powerful, especially against
SPA attacks. However the attacker might still be able to run multiple measurements with
the same data and average the results in order to remove the noise component or to measure
even small differences more exactly. Hiding of the power trace is thus not sufficient to prevent
DPA attacks.

Hiding in time domain randomly scrambles operations or inserts dummy operations in
order to make operations like averaging and attempts of trace alignment harder. Dummy
operations or clock cycles can easily be inserted, but many techniques exist to overcome these
countermeasures (see Kocher et al., 1999 or Mangard et al., 2007 for examples). Where
operations are parallelizable, the implementation might be changed to allow the order of

9

execution to be arbitrarily changed at runtime. This introduces additional noise and thus
lowers the correlation.

Masking

A more effective approach is to algorithmically hide those values the attacker is interested in.
As will be shown in Section 2.3, the values are typically intermediate values of cryptographic
operations. If such values are never directly processed by the microchip, the attacker’s efforts
will be effectless. To achieve this, the processed values are masked with a random value
called mask. For symmetric ciphers the mask is typically xored to the real value, producing
the masked value, which is then processed by the cryptographic function. Of course, the
operations of this function have been adjusted in order to work with masked values. Linear
operations are mostly trivial to implement (i.e. for a bitshift on the masked value, the mask
has to be shifted as well). Non-linear operations such as SBox replacements are more difficult
to implement and might have a negative impact on the cipher’s throughput (Mangard et al.,
2007).

For asymmetric ciphers, masking is typically achieved using mathematical properties. The
mask is again added or multiplied to the initial value in a reversible manner, so that the
masking can be removed at the end of the cryptographic operation. A typical masking
scheme would be the multiplication of the initial value x with a value m · r that is a multiple
of the modulo operand r, e.g.:

f(x) = xp mod r = (x ·mr)p mod r (2.5)

Completely masking a cryptographic algorithm might take some serious development time.
However, there are masking schemes already available for all major cryptographic algorithms
due to various publications (e.g. Akkar and Giraud, 2001).

2.3. Hypothesis Generation

For the experimental part, real targets are going to be attacked. As an important aspect for
both the attack and the initial analysis is the calculation of fitting hypothesis, the generic
principles will be introduced in this section. In order to attack an implementation of a cipher
using DPA, a preliminary analysis is crucial. It is important to find out which power model
applies to the chip and to be able to construct hypothesis on intermediate values, which are
required to run the actual correlation attack.

Some power models were presented in Section 2.2.1 and for an unknown implementation it
is typically wise to start with the hamming-weight model, as it is the easiest for analysis.
However, if further details are already known, a custom model might apply. Depending
on the context, one might already have a clue about the structures on the chip holding
the interesting information, be it data buses or registers, along with their respective size.
Otherwise one probably has to guess the size of these elements (e.g. 8, 16 or 32 bit registers)
and experimentally determine the values in a profiling phase. In such a phase, one compiles
a set of several hypothesis (i.e. one for each guess about power model and register width)
and posts some data to the device in a known-key scenario, so that one can be sure, that the
device processes the input data (plaintext) and the ciphertext at some point. Calculating
the correlations for each hypothesis will likely yield which assumptions were right. For a
32 bit register, the 8 bit hypothesis will still be valid, but much less exact than the 32

10

bit hypothesis which contains less unmodeled noise and thus yields the better correlation
values. This profiling method can be extended to find out, how the cipher was implemented,
in which order data is processed and which protection methods might be in place, which is
very useful for the experiments with unknown devices.

To actually attack a cipher, there are some requirements to launch a DPA attack: interme-
diate values have to be located that are dependent on the key and on known data (i.e. the
plaintext fed to the device or the ciphertext returned from the device). Ideally this intermedi-
ate value depends only on a small part of the key (i.e. a single byte) as otherwise the number
of hypothesis becomes too big. Such an intermediate is frequently found in ciphers, for exam-
ple if one byte of plaintext is combined using xor with one byte of the key in the first round
of the cipher. The attacker can then calculate hypothesis for all possible values of the key
byte and run the correlation attack, which should yield one value as the correct one. There is
only one drawback for such a placement of the targeted value, which is due to the hamming
weight power model: As the key is xored with the plaintext, the output hamming weight will
constantly differ in the hamming distance from one key to another with the same difference:
I.e. the hamming distance is defined as hd(a, b) = hw(a⊕b) as such, the distance for the out-
puts for two different keys (k1 and k2) is hd(d⊕k1, d⊕k2) = hw(d⊕d⊕k1⊕k2) = hw(k1⊕k2)
and thus independent of the data processed. Therefore all key values will yield some correla-

0 50 100 150 200 250
key hypothesis

1.0

0.5

0.0

0.5

1.0

co
rr

el
at

io
n

0 50 100 150 200 250
key hypothesis

1.0

0.5

0.0

0.5

1.0

co
rr

el
at

io
n

Figure 2.3.: Hamming weight correlation without (left) and with an sbox (right)

tion and it will be rather hard to distinguish the right key from an arbitrary other with just
one different bit. The left plot of Figure 2.3 illustrates this phenomenon. To overcome this,
it is advisable to choose target values that are dependent on key and data in a non-linear
fashion. Typically such relations are found after sbox substitutions. Now the attacked values
will be hw(s(d ⊕ k)). Consequently no other key than the right one will show a significant
correlation in the results, as the right plot in Figure 2.3 illustrates. Here the right key is 99,
which is visible in both plots, but much easier to spot in the one using the sbox.

11

12

CHAPTER

THREE

RFID

This chapter will introduce the most relevant parts of RFID standards and devices to provide
a background for the description of protocols and for assumptions made at the physical
interface level for power consumption hypothesis. A brief overview on Radio Frequency
Identification Devices (RFID) systems will introduce this chapter.

3.1. Overview

RFID is a wireless communication technology. An RFID system usually involves two com-
ponents: transponders called tags and corresponding reader devices. Tags are typically very
small, cheap and passively powered electronic devices carrying data. In their most simple
form they just respond with an identification (ID) to the reader device and are attached to
products to help automated identification and location. More complex tags, such as the ones
this thesis is concerned with, are complete smartcards with a separate microchip, memory
and even cryptographic units. Besides from tags that can only be read (mostly ID tokens),
reader devices are typically also capable of writing to the tags, which might not be the most
intuitive understanding based on their name. The thesis will sometimes refer to RFID reader
devices as proximity coupling device (PCD) and to RFID tags as proximity integrated circuit
card (PICC) respectively in accordance with ISO 14443.

RFID tags are in widespread use, counting various applications from theft-protection in
stores, car keys, rechargeable money cards or tickets in public transportation up to elec-
tronic passports. The latter categories are more advanced tags, that rely on cryptography
and embedded secrets for their security. With these presets in mind, side-channel analy-
sis becomes an attractive goal for the attacker, while withstanding these attacks becomes
important at the designer perspective.

3.2. Communication and Powering

Tags are completely passive devices that usually do not have their own power supply (Finken-
zeller, 2003). Communication is therefore initiated by the reader, which generates a radio
field that powers the tag and provides its clock signal using inductive coupling for which
tags are equipped with a coupling unit (i.e. a coil). This however limits the range of RFID
systems by design to ranges between 10cm and 1m.

Figure 3.1 shows the schematics of the power supply for a RFID tag. The capacitors Cr and
C1 are selected to form a parallel resonant circuit on the operating frequency. Furthermore

13

Ri

Magnetic field H

C1 C2
Cr

Reader

Transponder

Chip~

Figure 3.1.: Inductive coupling of a RFID tag from the energy of the magnetic field generated
by the reader (Finkenzeller, 2003)

the diode and capacitor C2 work for the rectification of the induced power to provide a stable
current.

After the tag enters the interrogation zone and is powered through the reader, it will be in
an active state and respond to requests issued by the reader.

3.3. Modulation and Transmission Protocols

There are several communication standards for low frequency (LF, typically 135 MHz) and
high frequency (HF, 13.56MHz) devices for different applications involving different mod-
ulation schemes and transmission protocols. Since all protocols relevant for this thesis are
based on the HF standard ISO 14443 type A, discussion is limited to this standard, although
all ideas and experiments will basically work with any other standard without significant
adjustment as well. For an in-depth description of RFID standards and protocols consult
Finkenzeller (2003). A brief overview on the transmission protocol involved in the ISO 14443
standard will be given in Section 3.3.1.

The ISO 14443 standard consists of four parts:

ISO 14443-1 Physical characteristics

ISO 14443-2 Radio frequency power and signal interface

ISO 14443-3 Initialization and anti-collision

ISO 14443-4 Transmission protocols

As the standard operates in the HF band, the carrier frequency is fixed at 13.56MHz. Mod-
ulation from reader to tag is achieved by using amplitude-shift keying (ASK) modulation,
creating gaps in the carrier when data is transmitted. The tag responds on a 848kHz sub-
carrier again using ASK modulation. These data transmissions therefore cause an increase
in the carrier strength in the recorded traces (see Figure 3.2).

Since it might lead to problems, if multiple tags are within the same interrogation zone, the
third part of the standard specifies anti-collision procedures and handling of multiple tags
at once.

14

time

vo
lta

ge ...

Figure 3.2.: Sample RFID trace showing modulation from reader to tag (left) and vice-versa
(right)

3.3.1. ISO 14443

The ISO 14443 standard not only defines all the physical aspects of data transmission (as par-
tially portrayed in Section 3.3), but also handles anti-collision, card selection and mechanisms
for higher level layers such as data integrity or data block chaining. Since all experiments in
this thesis are conducted in controlled environments, no consideration of anti-collision is nec-
essary. Nevertheless, the protocol implementation needs to be considered for the placement
of the trigger signal.

During the card selection process (ISO 14443-3), the card discloses its UID and returns an
acknowledgement (SAK) that defines whether the card is ISO 14443-4 compliant or driven
by a sole proprietary protocol. The latter is the case for example for Mifare classic cards (see
Section 5.3.2) while the former holds for DESFire cards (Section 5.3.1). Such ISO 14443-4
compliant cards perform an additional operation prior to entering the proprietary protocol
level: The reader issues a request for answer to select (RATS) command that assigns a logical
communication channel to the selected card and returns further information about the card
type. The logical communication channel (identified by a CID) allows multiple cards to be
in active communication in the same interrogation zone. They will ignore all packets that
are not addressed with their CID.

ISO 14443-3 also defines the frame format for a block transmission protocol (see Figure 3.3).

Prologue field

Error Detection Code

Information field Epilogue field

EDC[INF]PCB

1 byte 1 byte 2 bytes

[NAD][CID]

1 byte

Figure 3.3.: Packet frame format (ISO 14443-3)

Such a frame is broadcasted on the radio-channel. The card that has been selected to work
on channel CID will receive, error-check and process the frame. As the frame-size is limited,
a packet may be split into multiple frames. For details consult ISO 14443-4.

15

16

CHAPTER

FOUR

FRAMEWORK IMPLEMENTATION

This chapter introduces a standard workflow for the analysis of power / EM traces along
with the requirements to the framework and its architecture. Eventually it is shown, how
the framework assists preprocessing and analysis of these traces.

4.1. Workflow Overview

The following is an overview on the necessary steps for conducting power / EM analysis
experiments. Additional details relevant for the implementation of the steps will be given in
the course of this chapter. As time based side-channel attacks only account for a minor and
simple part, they’ll be omitted for now.

Analyze the protocol In order to measure a device’s power consumption, one has to be
able to communicate with it in order to force it to do the calculations one wishes to attack.
Therefore the protocol has to be known at least partially and interesting points have to be
located. This includes finding out the time offsets at which calculations take place using
which cipher, keys and values.

Implement protocol and trigger The protocol needs to be implemented so that the attacks
can be conducted automatically. Additionally for recording the power consumption using a
oscilloscope, it is usually required to provide a trigger signal indicating beginning and end
of the attacked calculations.

Record traces In an automated fashion, the device is forced to do some calculations which
are then recorded using the digital oscilloscope, and either used directly in an optimized
attack scenario or saved for later analysis.

Initial Analysis Usually the attacker has very limited initial knowledge about the inter-
nals of the device, thus visual trace inspection in combination with several preprocessing
tasks may be used to find information about the device operation, the cipher, the circuit
architecture and sometimes even possible countermeasures.

17

Preprocessing One of the most important parts to aid analysis is trace preprocessing.
Depending on the setup, traces may need to be aligned first in order to make any analy-
sis possible. Other preprocessing steps include rectification, filtering, integration or peak
extraction and are detailed in Section 4.2.

Hypothesis Generation In order to actually attack a device’s power consumption, the
cipher needs to be analyzed to provide some meaningful hypothesis that can be used for
correlation as described earlier. According to Section 2.2.3, these hypothesis will initially
concentrate on the known cipher- and plaintexts in order to verify the traces and to gain
further information about the time offset at which computations take place and the quality
of the recordings.

Correlation The actual correlation attack is then left with the plain calculation of the
correlation of the hypothetic power consumptions with the preprocessed traces. Based on
significant peaks, key bytes can be extracted until the whole key is revealed. If multiple
candidates remain, a brute-force attack may usually be practical to verify the right key.

4.2. Preprocessing Toolsuite and Visualisation

With the acquirement of the first traces, it was immediately necessary to preprocess them
in preparation for initial analysis. Some existing code already provided basic utilities that
aided this preprocessing stage. Also several other simple preprocessing tools were created.
Trying to use these tools on the recorded traces revealed several problems which eventually
lead to the requirements for the preprocessing part of the framework that forms its core.

The remaining parts of this section describe some of the necessary preprocessing steps in
greater detail. Further requirements for analysis workflows and the resulting framework
architecture are described in the following Section 4.4.

4.2.1. Requirements

Initially scripts, later Makefiles were used to enhance the application of the already existing
tools to traces, but this quickly turned out to produce a great deal of overhead if a new process
needed to be started for each step of preprocessing. In a standard Makefile driven workflow,
each intermediate result would be stored in a separate file. This file had to be stored on
disk and could not stay in the kernel’s cache, because it is overwritten by the intermediate
results of other trace files. It also has to be read again for the next processing step, causing
additional unnecessary disk read, write and, also very important, space overhead. As a
result, a pipe based architecture seemed most useful. However such an architecture built
on standalone tools still has significant drawbacks. Because of these initial mess-ups, the
requirement for an efficient, flexible and easy to use scriptable preprocessing library was
created.

For reasons of efficiency, the functions need to be written in C and cannot be directly
implemented in a scripting language. There are already libraries providing similar functions
such as the SciPy library, but as it solely operates on double arrays, the space overhead
was not neglectable anymore, since the traces are recorded on a 8-bit discrete scale and
as such only require an eighth of the space used by SciPy. Furthermore implementing
the preprocessing tasks in SciPy would limit the framework’s use to the python domain.

18

Since many tools in the C language domain already existed, an easy integration of the
provided functionality in these programs was aspired. Since a subset of the preprocessing
functions was already written in C, these functions were already used from C programs in
early experiments. But it soon became evident, that the coding overhead and the lack of
scripting options was just too big to be of easy use in the C language domain. Thus the
toolsuite was modified to exposing its interface using a shared C library which can then be
accessed using wrappers from the user’s favorite scripting language or by directly calling the
provided functions from other C programs.

4.2.2. Rasterization / Alignment

Since the clock of the oscilloscope is not synchronized with the PICC’s clock, there is a drift
in its processing causing up to ±20% of clock skew for different traces, while a single clock
cycle might vary about ±5 to 1%. As such, any processing depending on exact alignment of
the traces will fail or at least result in significantly more noisy data. Fortunately the clock
signal for the device is derived from the carrier signal which is clearly visible in the recorded
trace. In order to fix the clock skew, the rasterization step will make each clock cycle the
same length by locating beginning and end of a clock cycle using a least squared difference
pattern search approach before interpolating the current clock cycle length to the desired
one. There might still be a clock skew within the individual clock cycle, however this will
be relatively small may be neglected here. Using the rasterization approach, the individual
data points of each traces will correspond to a certain time relative to the device’s clock,
which is the requirement for further analysis such as time-based averaging or correlation.

See preprocessor.raster() in the appendix for an API description.

Pattern Matching

The reference pattern has to be found manually once for each measurement setup by visually
inspecting a recorded trace. This pattern is ideally a small subset of a clock cycle with a
steep increase or decrease of amplitude. It is then used to identify a fixed position in each
clock cycle. The pattern p of length n is shifted along the trace t, calculating the squared
difference (variance) d:

di =
n−1∑
j=0

(ti+j − pj)2

Each local minimum in d that is below a certain threshold marks the the fixed position and
is then used to interpolate the specific period to the specified length.

4.2.3. Analysis and normalization

Before feeding traces to the correlation engine, it is tried to minimize certain noise effects.
The rasterization process already removes a great deal, but still individual traces may vary.
As traces are usually recorded over several hours, environment conditions are subject to
change and may thus affect the recorded values. A initial analysis step implemented in the
framework calculates average, variance as well as minimum and maximum values in a traces.
These results aid identification of erroneous traces, but will also show other biases. For
example, several trace sets that were recorded during experiments, had varying averages,
that were dependent on time and seemed to be due to the oscilloscope. To reverse these
effects, the trace’s averages can be adjusted by shifting them along the y-axis. Further

19

normalization is not done, since the variance of traces only slightly differs. Modifying it
might also introduce additional unexpected errors.

4.2.4. Average and Variance Graphs

A single power / EM trace is much too noisy to detect any interesting data in it. However
several hundreds or thousands of traces combined may give a more accurate picture of the
device operations and the recording’s quality. Average graphs give a general idea about the
device’s power profile and may be used to detect patterned operations such as rounds of a
block cipher.

µt =
1

n

n−1∑
i=0

tt,i

Variance graphs show areas where power consumption varies stronger.

σ2t =
1

n− 1

∑
j∈T

(ji − pt)2

This might be due to input data and thus help to identify the interesting parts of the power
traces, but may also be caused by other non constant data or operations processed by the
device. For power analysis on RFID systems this may also be due to protocol or radio
specific properties. The magnitude of the variance difference is also an important indicator
for quality of the leaked power signal.

Graphs generated using this method will be shown in Chapter 6 to support the analysis and
evaluation of the experiments.

4.2.5. Simple Filters

Correlations can be significantly improved if the noise component, which is present in the
traces, can be reduced. One possibility to achieve this are digital filters, some of which are
implemented in the framework to simplify this task.

Average Filter

An average filter takes n input samples and returns their average. It is used to reduce high
frequency noise. Such a filter is shifted along the trace t producing |t| − n + 1 new output
samples.

µi =
1

n

n−1∑
j=0

ti+j

The filter can be rapidly calculated by using its recursion equation:

µi+1 = µi −
ti − ti+n

n

Peak Extraction and Integration

The integration filter is similar to the average filter, except that the division is omitted, thus
the integration filter looses scale and will likely need another target data type as the sum of

20

several bytes easily exceeds a byte’s capacity. The filter is also used to reduce high frequency
noise and provides a sliding window for analysis. As the leaked current is modulated onto
the trace, the carrier peaks contain the most amount of information (Mangard et al., 2007),
but are obscured by noise. Assuming a Gaussian distributed noise source, the integration
filter will reduce the amount of noise, while amplifying the leaked signal.

A similar approach, not exactly filtering, but reducing the amount of data of a trace, is
peak extraction which is also based on the observation that the leaked information is mainly
hidden in the peaks. By extracting only the maxima of a rectified trace, the most valuable
information is still present, while the trace’s size is reduced by a factor of fs/2fc (with fs
being the sampling and fc the carrier frequency).

Additionally, peak extraction may be combined with a preceeding integration step to reduce
the noise component. An additional benefit is the possibility of a normalization step, that
can be used to keep the (small) data type, while providing greater accuracy due to the scaling
procedure in the normalization. This is possible, because the peaks will be in a very small
range of values.

FIR Filter

Finite impulse response (FIR) filters are similar to average filters (the average filter is actually
a special case of a FIR filter), but allow a more fine grained control, such as weighting
neighboring points less. Filter design is an entire field of study which is not delved into here,
especially as these are mainly used for stream processing data. For fine-grained frequency
filtering FFT filters are much better suited.

A FIR filter is given as an array of coefficients c and its calculation is straightforward:

t′i =
1∑
cj

n∑
j=0

cj · ti+j

4.2.6. FFT filters

To remove certain frequencies, FFT filters are a powerful tool. As an efficient implementation
of FFT is not straightforward, the actual calculation is performed by libfftw3 for which the
framework provides a wrapper facilitating FFT usage.

4.3. Correlation

As already discussed in Section 2.2.3, the correlation coefficient, which is the preferred tool
for finding the matching hypothesis, is defined as follows (Mangard et al., 2007):

ρX,Y =
Cov(X,Y)√

Var(X) ·Var(Y)

While covariance and variance are defined as follows for sample sets X and Y :

Cov(X,Y) =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

Var(X) =
1

n

n∑
i=1

(xi − x̄)2

21

A naive implementation for calculating the covariation matrix of a set of hypothesis H and
a set of traces T with a trace length of S samples, results in |H| · S matrix multiplication
in a magnitude of O(S · |T |) in memory requirement and each O(|H| · S · |T |) in time. For
uncharacterized devices, trace lengths in correlations can easily reach up to 1M samples,
while the number of traces is usually several 10k, resulting in a memory requirement of
several GB. Obviously the naive approach is not appropriate.

Adjusting the formulas for computer algorithms results in the following, effectively reducing
the requirements for calculating the variance to the sum and the squared sum of the vector.

Var(X) =
1

n

(∑
x2i − 2x̄

∑
xi +

∑
x̄2
)

=
1

n

(∑
x2i

)
−
(

1

n

∑
xi

)2

Cov(X,Y) =
1

n− 1

(∑
xiyi − x̄

∑
yi − ȳ

∑
xi + nx̄ȳ

)
=

1

n− 1

(∑
xiyi − nx̄ȳ

)
The amount of hypothesis is usually comparatively small (typically one byte is attacked,
resulting in 256 hypothesis), thus its average ȳ and standard deviation σy can be precomputed
with neglectable efforts. To reduce the global calculation overhead, the correlation equation
is also reduced to simple terms:

ρx,y =
1

n− 1
·

∑
xiyi − ȳ

∑
xi

σy ·
√∑

x2i
n −

(∑
xi
n

)2 (4.1)

Thus the remaining reduced requirements for the calculation are as follows resulting in a
total space requirement of O(|H| · S).

1. precomputed hypothesis values (ȳ and σy)

2. a multiplication sum for each hypothesis and trace (
∑
xiyi)

3. sum and square sum for each trace-sample (
∑
xi,
∑
x2i)

Since the sums can be updated on the fly, traces can now be processed sequentially and the
runtime is now reduced to O(|H| · S · |T |) once, while the expensive calculation of equation
4.1 only happens once for each entry of the result matrix, i.e. O(|H| · S). The process is
also highly parallelizable, thus for a small number of hypothesis (≤ 64), the limiting factor
in this algorithm tends to be the harddisk bandwidth for reading the traces.

4.4. Framework Architecture

As a result of the experience with the old tools (see Section 4.2.1) the following list of
requirements was created:

A pipe based architecture allows the chaining of multiple processing steps and the respec-
tive reuse of intermediate results without having to store intermediate results on disk.

Expose basic functionality in C domain for reasons of speed, efficiency and reuse in other
applications.

22

Allow interactive and scriptable use of the framework and provide a high-level interface
for easy use, adaption and experimentation.

Consequently, the preprocessing steps described in the previous sections were implemented in
a C library, although in their standalone form, as provided by the library, they are still rather
complicated to use. Therefore the high-level framework architecture was defined to allow for
the easy use of preprocessing and correlation functionality in DPA scenarios, emphasizing
the workflow aspect of these tasks. Figure 4.1 gives an overview of this architecture.

C API
correlationpreprocessing

+processors[]

«datatype»
Buffer

TraceProcessor

+ process(trace : Buffer) : Buffer
+ profile(trace : Buffer) : Buffer

CombinedProcessor

DPAWorkflow
+ processors[] : TraceProcessor
+ path_iter(in_path, out_path=None)
+ __iter__()
+ process()

Correlator
+ hypo[] : uint8_t
+ matrix[] : float
+ add_trace(trace : Buffer, idx=-1)
+ preprocess()

ConcreteProcessor

+ process(trace : Buffer) : Buffer
+ __call__(processor : TraceProcessor) : TraceProcessor

module module

preprocessor

module Cython

Python

Figure 4.1.: Architecture of core functionality

4.4.1. Type Independence

One further requirement for the preprocessing toolsuite is the type independence. Traces are
typically recorded as unsigned chars (uint8 t) and several preprocessing steps might need
better accuracy, while memory consumption should be limited to a minimum, especially if
results have to be written back to the harddisk. On disk, such multiple thousands of traces
easily consume a couple of 100 GiB. To achieve type independent functionality, a C++
template approach seemed most useful. Unfortunately though, C++ modules have serious
problems when it comes to using these modules from external languages. Consequently, the
preprocessing toolsuite is implemented in C, where the templating functionality is achieved
using preprocessor macros. Some additional glue- and boilerplate code is auto-generated
from the C source file.

On a higher abstraction level, the preprocessor.Buffer class holds the type for each buffer,
so that the wrapper function can then select the corresponding implementation from the
preprocessing module.

4.4.2. Implementation

For the higher level implementation, it was decided to implement the functionality in python
for several reasons. Python has excellent wrapping capabilities of C code (cython), allows

23

for quick and easy implementation not only of the library but also of actual software that
uses the provided library, comes with a shell that aids experimental inspection of results
in initial analysis scenarios and last but not least includes many more powerful tools with
SciPy and the matplotlib for visualization of the results. Other tools (such as octave or an
existing plotting utility) were initially used for visualization of the results, but were either
slow, inflexible or had serious usability issues (e.g. a bug in gnuplot currently prevents scaling
and zooming).

The modules were thus implemented in cython and python, along with documentation and
unit tests. However, for any given scenario that might need to use the preprocessing toolsuite
independently of python, the basic functionality is still in the C modules, which can be used
from almost any other language as well.

4.4.3. Correlation Workflow

The correlation calculation is accelerated as described in Section 4.3 and based on Equation
4.1. This functionality is provided in a separate module, which is again wrapped by a python
module to provide a simple interface (documented in Appendix A.2). The procedure works
as follows:

Hypothesis have to be defined manually for each trace and key, based on assumptions on
the power model, the cipher etc. (see Section 2.3 for details). Typically the trace
recording’s logfile would be read to create the hypothesis based on the input / output
of the device.

Traces have to be added. The traces can be the result of a workflow task, if there are
multiple workflow results, multiple Correlators can be used to evaluate multiple results
simultaneously. Since the Correlator is thread-safe, multiple traces can be added at
once.

In a final step, the actual correlation is computed returning the correlation matrix suitable
for display and evaluation.

4.4.4. Highlevel Workflow

In order to simplify the whole process in an workflow, typical programming tasks of the
analysis stage are handled by the framework, more precisely by the DPAWorkflow class.
As illustrated in Figure 4.1, each processing function is wrapped by a ConcreteProcessor
that is able to process individual traces to produce a certain output. These processors
can be chained and combined and thus form a pipe-based architecture that is used by a
DPAWorkflow. Such a workflow instance iterates over all input files and handles management
of reading traces and passing of intermediate results along the pipe of processors.

The sole processing of the traces would not be sufficient, as the data needs to end up in sinks
for evaluations. These sinks are VoidProcessors that do not produce any output, but still
process traces and gain information from then. Standard sinks calculate the correlation of
preprocessed traces with a set of hypothesis or generate average and variance traces whose
visualizations lead to graphs such as the ones in Chapter 6.

Further information on the workflow internals is available in Appendix A.3.

24

CHAPTER

FIVE

PREPARATION

This chapter covers the experiments’ surroundings. To prepare the actual attacks, several
targets were chosen, thus a specific description of these targets will provide the necessary
preconditions for mounting the attacks. The exact experiments’ setups and results are
described in Chapter 6.

5.1. Tool Selection

Attacks may sound easy in theory, but may need more elaborate work in practice. One
of the challenges when analyzing and attacking RFID chips is to choose the right tool for
operation. A typical RFID reader is usually not sufficient for side-channel attacks, as it
lacks certain features, such as the ability for very accurate time measurements of operations
or for forced variation of these timings. Also it is indispensable for all experiments that
require recordings using a oscilloscope, to generate a trigger signal in a very specific state.
Earlier studies and projects on RFID devices sometimes used self-built readers for these
tasks, but today several open source devices such as the OpenPCD or the proxmark3 exist,
providing all the necessary freedom for these operations. Both devices support the ISO
14443-A protocol suite, which is the protocol of the chosen attack targets (see Section 5.2).
Since the OpenPCD features a cleaner and better structured source tree, it is well suited for
productivity uses, but limited to the HF ISO standards in contrast to the proxmark3 board
which is basically a software defined radio (SDR) for HF and LF RFID protocols, thus very
well suited for protocol analysis and implementation of arbitrary new protocols. While there
were no immediate plans to extend the attacks to non-ISO 14443-A compliant cards, the
prospect of not having to start from scratch for arbitrary other protocols seemed worthwhile.
Also in spring 2010, the proxmark3 software was in more active development supported by
a bigger community than the OpenPCD, thus the proxmark3 was the choice for the attacks
described here, although other devices might have worked just as well. Despite some bugs
and instabilities, which were due to poor software design, the proxmark3 was an excellent
choice and enabled the execution of all the experiments with moderate efforts. The few bugs
and annoyances that were encountered during the development could be located and fixed.

5.2. Attack Targets

In recent years, several major RFID cards, like Mifare Classic (Garcia et al., 2008; Nohl et al.,
2008) or Legic Prime (Plötz and Nohl, 2009b), were attacked by reverse engineers exploiting
flaws in the card’s hardware, its proprietary ciphers and the protocols. With the advance
of more or less modern cryptography on RFID smart cards, other means of analysis will

25

become the target of hackers. Compared to their predecessors, newer cards are developed
with security much more in mind. As such, well-known public ciphers such as DES or AES
are used in these cards’ protocols which seem safe and robust for now.

Experimentally breaking a modern card’s security is the most likely practical application
of the framework, and consequently the analysis and tests focused on such a modern card,
in order to develop the requirements for the framework with a practical target that allows
the identification of real life use-cases. Additional emphasis has been put on the analysis
of the Mifare Classic system, as it is proprietary, but very well known and researched.
Furthermore, the card has been opened in the reverse engineering process and pictures of
the chip are available that could be beneficial for the analysis, e.g. by possibly allowing fine
grained positioning of an EM probe.

Beside this simple target for testing purposes, the actual experiments were meant to focus
on its successor: the Mifare DESFire card. The card seems secure on a protocol level, but
it is assumed, that it does not feature strong protection against power/EM analysis attacks,
as there is an extended version (the DESFire EV1) explicitly protected against these kind
of attacks.

With the emergence, that no immediate results are to be expected from these targets, a third
target was chosen for evaluation and comparison of power analysis of classic power supplies
to induction based ones as they are found in the RFID cards. For this a dual interface
card was chosen. The programmable JCOP 41 can be accessed using a classic contact-based
smartcard interface, but also using RFID and is thus a good target for such comparisons. The
card supports a wide range of cryptography modules already in hardware, which is especially
hardened against DPA attacks, but since the device can be freely programmed and executes
a virtual machines, it is assumed, that it still leaks data dependent information. Even if this
were not the case, it is assumed, that some kind of power profile can be extracted, which
can be used to compare it to the RFID recorded one.

26

5.3. Target Protocols

In order to initially conduct the experiments, the targeted protocols have to be implemented
and since the framework shall be capable of working with many different protocols, the
respective protocol implementation needs to be easy. As motivated in Section 5.1, this is
the case for most open-source reader devices, although the proxmark3 has the additional
advantage, that nearly all operations can be executed on the board and one is in complete
control of the most aspects of the protocol implementation including modulation details and
timing. To verify, that custom protocols can be implemented, which is also a necessity for
eventually testing the framework against any card of that protocol, the DESFire protocol
was implemented exemplarily. The next section describes this protocol in more detail, as
many aspects of the specs were not publicly available. Some additional information on the
implementation of the other protocols, especially concerning the Mifare Classic card will be
given towards the end of this chapter.

5.3.1. Mifare DESFire

The Mifare DESFire protocol is built upon the ISO 14443-A standard (see Chapter 3)
embedding its own proprietary protocol on top of it. Unfortunately, the protocol is not
publicly specified and documentation is scarce. However, a couple of documents found
in the files section of the proxmark3 website (slides on a Mifare Workshop which have
unfortunately now been removed) as well as several sources on the internet were very helpful
in implementing the parts necessary for the attack of the device. In particular sample
traces found on Ridrix’s Blog (Ridrix, 2009a, b) clarified open questions and the Series 40
Nokia 6212 NFC SDK (Nokia, 2008) includes some Java classes revealing additional missing
protocol details after decompilation.

DESFire Protocol Overview

The DESFire protocol runs on top of ISO 14443-4 and is a request-response protocol in which
the PCD issues a command and awaits a reply by the PICC. Each DESFire command starts
with a command code byte followed by a command-specific number of argument bytes.

A DESFire card is organized in applications and data files. Each application holds up
to 14 keys that can be assigned different rights regarding the application or its files. A
typical application will have a key with read permissions only, while another one, whose
confidentiality may be more important, will also have write permissions. In order to execute
restricted operations, a key has to be selected. This is done by executing an authentication
procedure to ensure that both parties have knowledge of the same key, and to establish a
session key which may be used for encrypted communication or message authentication.

The key number 0 of the default application (0) is the master key and allows to create or
destroy other applications as well as to change the card’s master key.

DESFire (3)DES Operation

DESFire cards have a special (3)DES operation mode in such as they only perform encrypt
operations, even when decrypting data. As for DES it holds that Decrypt(Encrypt(x)) =
Encrypt(Decrypt(x)), thus such a mode is possible if the reader only uses decrypt operations,

27

even if encrypting data. See Figure 5.1 for an example illustrating the difference between
standard operation and the DESFire specific one.

y = D(x)
y

x = E(y)

y = E(x)
y

x = D(y)

y = E(x)
y

x = D(y)

y = E(x)
y

x = D(y)

PCD PICC A B

Figure 5.1.: Difference between DESFire specific DES operation (left) and the normal one
(right)

P

IV C

...

De

C

IV P

...

En

C

IV P

...

En

P

IV C

...

De

Figure 5.2.: Standard and DESFire specific Cipher Block Chaining modes

Another consequence of this operation mode is that CBC modes (Cipher Block Chaining)
have to be adjusted, such that there is an abnormal handling for packets received by the
PCD. Figure 5.2 illustrates the different modes. In traditional setups, only the first two
modes are used. In the DESFire case, the PICC uses mode 1 when sending and mode 3
when receiving, whereas the PCD uses mode 2 when receiving and mode 4 when sending.

For sake of clarity and simplicity, the following sections will refer to encryption as the oper-
ation being performed when sending data (i.e. the PICC encrypts when sending, the PCD
decrypts). Consequently, decryption will refer to the operation performed when receiving
data. Unless stated otherwise, all data is processed in the according CBC mode with the
initialization vector defaulting to 0.

DESFire cards can operate in 3DES or fall back to single DES mode, which happens au-
tomatically if selecting a key K3DES := {KA,KB} with KA = KB, since 3DES uses three
single DES operations:

3DES(x) := E(D(E(x,KA),KB),KA)

If KA and KB are the same, it holds that D(E(x,KA),KA) = x resulting in:

3DES(x) := E(D(E(x,KA),KA),KA) = E(x,KA)

DESFire Protocol Commands

The following describes a couple of commands exemplarily that played a crucial role in the
execution of the experiments or in understanding yet unknown aspects of the protocol. The
command to read an encrypted file for example helped to understand the encryption, MAC
and padding scheme that is used in these operations, which was required to implement the

28

CHANGE KEY command. To do so, a plain file was created and its access settings were changed
to only allow encrypted reads. Using the READ FILE command, an encrypted packet would
be read and could be decrypted and analyzed to find out, which padding is used and how
the MAC is calculated.

Not all commands that have been implemented are strictly relevant for this thesis and there-
fore some commands and additional details are omitted in this listing. For a more thorough
command and feature reference, please refer directly to the DESFire implementation for the
proxmark3 device, which has been open sourced as part of this work.

Authentication One of the key aspects of the card’s protocol is the authentication pro-
cedure that selects a specific key. Figure 5.3 illustrates the process: The PCD sends a
REQUEST AUTHENTICATION command specifying the key number to be used for authentica-
tion. Both parties will now use the specified key for their 3DES operations. The PICC
responds to the request with an encrypted 8 byte nonce in a AUTHENTICATION FRAME packet.
Being decrypted and left-rotated by one byte by the PCD, it continues authentication in
another AUTHENTICATION FRAME packet by encrypting the modified nonce and generating
and encrypting its own 8 byte random number. After verifying the information, the PICC
finishes authentication by returning the nonce. Again it decrypts and left-rotates the nonce
by one byte, decrypts the result and returns it to the PCD, which then verifies the results.

REQ AUTH: IDkey

AUTH FRAME: E(NPICC)

AUTH FRAME: E(rot(NPICC), NPCD)

OP OK: E(rot(NPCD))

PCD PICC

Figure 5.3.: Authentication procedure in the Mifare DESFire protocol

Both parties then establish a 16 byte session key that is derived from the exchanged nonces
as follows, where NPCD,1 refers to the first 4 bytes of the nonce generated by the PCD:

KSess := NPICC,1|NPCD,1|NPICC,2|NPCD,2

The mixing is necessary, since the PCD could force the device to operate in single DES mode
if the session key were defined as KSess := NPICC |NPCD and the PCD chose the same nonce
as the PICC. In case the original key is a single DES key, the last 8 bytes of the session key
will be set to its first 8 bytes thus forcing single DES operation.

Application Creation and Selection For experiments, it makes sense not to work on the
master key / master application, which could potentially render the card unusable. Therefore
it is useful to be able to create and select applications on which further experiments can be
conducted.

An application is identified by a 24bit application id (AID). The AID is always transmitted
in little endian byte order (i.e. the first byte transmitted holding the least significant byte
of the AID). To create an application, a CREATE APPLICATION command is sent:

29

1 byte CMD CREATE APPLICATION

3 bytes AID application id

1 byte KeySettings Upper 4 bits: key change key
Flags:
8 := allow config change
4 := allow deletion
2 := allow file list
1 := allow master key change
To freeze keys, set this byte to 0xf0

1 byte KeyCount number of keys in use

Accordingly, an application can be selected by sending a SELECT APPLICATION command:

1 byte CMD SELECT APPLICATION

3 bytes AID application id

The application is then activated and all following operations occur in this application’s
context.

Read File Files are identified by a number and can be read using the READ DATA command:

1 byte CMD READ DATA

3 bytes FID file id

3 bytes Offset

3 bytes Length number of bytes to read

Depending on the file’s settings that are also stored on the card, the response is either plain,
uses a Message Authentication Code (MAC) for integrity or is encrypted using 3DES with
the established session key.

In order to gain test vectors and sample data, a file with known content has been written
to the card. Using the CHANGE FILE SETTINGS command the security level of the file was
then changed, such that its content is either returned with a four byte MAC or completely
encrypted.

1 byte CMD CHANGE FILE SETTINGS

3 bytes FID file id

1 byte SecurityLevel PLAIN, MAC, 3DES . . .

2 bytes AccessSettings 4 nibbles:
3: read/write key
2: 0xe
1: read key
0: write key

Encryption As a result of the observations of reading an encrypted file with known content,
it is concluded, that for encrypting data the plaintext is first prepared by appending a two
byte CRC and padding the whole blob to a multiple of eight bytes. The result is then
encrypted using the session key and the corresponding CBC mode (see Section 5.3.1). This
could be verified by testing the functionality using the WRITE DATA command.

Message Authentication Furthermore, it is concluded, that data that is protected by a
MAC contains a four byte MAC that is appended to the original plaintext. Observations
showed, that in order to generate the MAC, the zero padded plaintext is enciphered in CBC

30

mode (mode 1 in Figure 5.2). The first four bytes of the last cipher block then correspond
to the MAC.

Key Change In order to attack others keys but 0x000. . . , keys need to be changed. This
can be achieved using the CHANGE KEY command:

1 byte CMD CHANGE KEY

1 byte SLOT key slot (0-13)

N bytes key data (see description)

There are two modes for changing keys. The normal mode applies if the changed key is the
one with which the PCD was just authenticated or if any key is allowed to change keys. In
these cases no proof of knowledge of the old key is necessary and key-data is computed by
encrypting the new key according to the previous paragraph on encryption.

In all other cases, key-data is computed as follows: The old key and the new key are combined
bytewise using XOR and a two byte CRC of the result is appended. Another two byte CRC
of the new key is then appended, before the data is zero padded and encrypted in CBC
mode. This is just as before, but without implicitly appending an additional CRC to the
data.

Evaluation

Finding out the details to implement the DESFire command set was a tedious amount of
work and required many experiments and blind guesses. However, the proxmark3 proved as a
useful platform to support experiments on yet unknown command sequences and eventually
allowed to implement these commands in a usable manner. As expected, the implementation
of custom protocols is an easy task and the proxmark3 provides the necessary flexibility to
implement even complex or non-standard protocols, which is one of its strengths and one of
the reasons, the tool has been chosen in the first place.

5.3.2. Mifare Classic

The older Mifare Classic card is also built upon ISO 14443. Again the protocol is not
publicly specified, but since it has already been completely broken (Garcia et al., 2008, 2009),
sufficient amounts of protocol information are available to actually mount the attack. For
example, the proxmark3 codebase already contains functionality to send an authentication
request in order to record the card’s nonces as implemented by de Koning Gans et al. (2008)).
This information is used to break the card’s key based on weaknesses in the cryptographic
algorithm (c.f. Garcia et al., 2008, 2009). But the functionality can also be reused for the
experiments, simplifying the development. The basic card architecture and authentication
mechanism will be described here, as it is the base for locating interesting cryptographic
operations and therefore also needed for the placement and implementation of the trigger.

Card and Memory Structure

The card has a similar but different setup as the more advanced DESFire card. It consists of
16 sectors that are composed of four 16 byte blocks. The last block of each sector contains
keys and access conditions for each of the four blocks. Each sector comes with two 48bit
keys, each having different rights on the blocks as defined in the access control block. For

31

example, there might be a public read-capable key and a private write-capable key. Upon
successful authentication with one key, its corresponding access conditions are activated.
The card provides simple data manipulating functions such as read, write, increment or
decrement.

Authentication

Authentication is performed in a mutual challenge response protocol. Several weaknesses
have been discovered in the proprietary cipher. Accordingly the authentication procedure is
very well documented (e.g. in Garcia et al., 2008 or Garcia et al., 2009):

The card transmits a AUTH A (AUTH B) command with the corresponding block-number to
request authentication for the specified block with key A (or B respectively).

1 byte CMD AUTH {A|B}
1 byte BLOCK block number

Then the exchange of four-byte challenges and responses is started as illustrated in Figure
5.4. For details refer to Garcia et al. (2009). The tag sends its nonce nT to the reader that

AUTH A

nT

E(nR|aR)

E(aT)

Reader Tag

Figure 5.4.: Authentication procedure in the Mifare Classic protocol

computes the appropriate answer aR = f(nT) and proves knowledge of the shared key, by
encrypting it with the key-stream generated by the crypto-1 cipher that was earlier initialized
with the shared key. The process is repeated for the reader’s nonce nR.

5.3.3. JCOP

For the comparison experiments, the dual-interface card JCOP 41 was chosen, which was
the only dual-interface card available. Again the card’s contactless interface is based on ISO
14443 (see Section 3.3.1).

For the contact-based interface, a RS232 based terminal was used, for which software was
already available. On top of both layers, the card is run by the blockoriented T=1 protocol
as specified in ISO 7816-3. Only the most necessary parts of this protocol were implemented
for both interfaces to allow communication and execution of the experiments.

As the card is freely programmable, a simple program was written for the device, which the
card would execute for each request to this application.

32

CHAPTER

SIX

EXPERIMENTS AND RESULTS

This chapter describes the experiments that were conducted to generate data for assessing
the frameworks requirements and for verifying its functionality under real conditions. Since
there was no attack surface for time-based side-channel attacks, as described in the next
subsection, the work focuses very much on recording and evaluating the power profiles of
devices for DPA attacks. Several measurement setups were tried in the prospect of acquiring
a strong power/EM signal despite the high noise induced by the carrier. Besides the actual
experiments on real data, additional experiments with simulated data were conducted in
order to assess the minimum SNR requirements and the effects induced by the several noise
components individually. However, as these experiments on simulated data can only model
the chip’s behavior to a certain degree, its results are best understood as a hint to show
capabilities and limitations.

6.1. Timing Experiments

The reader board allows to measure time very exactly, at least up to the carrier frequency
which 1:1 corresponds to the clock rate of the attacked smartcard. As such, time measuring
functionality was implemented into the proxmark3 software, that counts the number of
clock cycles until the first bit of the answer is received. Several measurements were executed
with different data. All targets though, seem to be protected against timing attacks, as the
timing for each command is constant. The only noteworthy observations are, that the Mifare
DESFire card takes a little bit longer for the first authentication request to an application.
Subsequent requests to the same application are quicker, most likely due to some caching
functionality. The same applies to the JCOP card, the response of which is significantly
quicker, if the exact same command is issued a second time immediately after the original
command. Additionally, the card is comparatively slow, thus an implementation that has
some operation specific timing, will be easy to attack even with less exact measurements.

6.2. Measurement Setup Overview

DPA attacks have been successful with a huge variety of measurement setups, with even
the most sloppy experiments still yielding results. The experiments conducted in this thesis
generally follow the setup illustrated in Figure 6.1. The numbers correspond to respective
actions and are order chronologically. The proxmark3 is controlled by the computer (1),
creates the HF field at the antenna (2) and initializes the card up to execution of the
command of interest, at which point a trigger is posted on one of the device’s LEDs (4). The
oscilloscope is attached to the trigger and records the probe’s information (5) upon activity

33

PC: record & control proxmark3 board

contactless
smartcard

oscilloscope

probe

antenna

trigger
signal

LED(1)

(7)

(4)
(5)

(2)

(3)

(8)

(6)

Figure 6.1.: Illustration of the general experiment setup

of the trigger signal (4), for which it has been set up (3) by the controlling software running
on the PC. The PC will also download and store the recorded trace from the oscilloscope
(8) after the proxmark3 received (6) and transmitted (7) the answer from the card.

6.3. Target Protocols and Trigger Placement

The experiments on the Mifare Classic and Mifare DESFire cards were designed in such a
way, that the observed operation includes cryptographic operations with a constant key, but
different plain- / ciphertexts. This section will briefly describe the measurement implemen-
tation and observation points.

6.3.1. Mifare Classic

For the Mifare Classic card, the authentication works using a mutual challenge response
protocol (see Section 5.3.2). For each trace to be recorded, a new ISO 14443 connection is
established according to Section 3.3.1. Upon transmission of the authentication request, the
trigger is set and stays active until the card responds. Afterwards the card is disconnected,
because the authentication procedure did not complete.

6.3.2. Mifare DESFire

The Mifare DESFire protocol was already described in Section 5.3.1. Authentication is again
based on a mutual challenge response protocol. Since the card allows multiple authentica-
tions in a row, the connection to the card is only established initially. The software then
runs a series of authentication requests for the same application and key. The trigger is
again set after sending the authentication request and is released with the reception of the
card’s answer.

Experiments conducted by Kasper et al. (2009) placed the trigger at a different position in
the protocol, i.e. after the reader sent its nonce and its answer to the tag. As the initial
plan was to attack the cipher’s intermediate results using correlation, one might be worried,
that the tag does not do any cryptographic operation for the placement chosen in this

34

thesis’ experiment, because it might just send random data as a challenge and perform the
more expensive cryptographic operations only in the second phase of the authentication
procedure. For a correlation attack on intermediate values this might be fatal. However,
as the measurement setups turned out not to be good enough for such attacks, this was
neglectable. Furthermore, the results would still reveal a correlation for the ciphertext (which
corresponds to the random data sent by the card), but not for the initial nonce plaintext
(which the card would only compute in the second phase). For calculating the hypothesis,
it has therefore to be kept in mind to not only attack the initial nonce plaintext, but also
the encrypted ciphertext sent by the card. In such a scenario, attacks on the cryptographic
operations could only be made in the second phase of the authentication.

6.3.3. JCOP

For the JAVA card, ISO 7816 application protocol data units (APDU) have been imple-
mented. Similar to the previously described DESFire card, the connection is established
only once. Upon selection of the user defined application, a series of challenges is sent. After
each challenge, the trigger is set until the card replies. Unfortunately, the card takes a very
long time to respond, as such the recorded trace does not comprise the full time-span of the
card’s calculation. However, as can be seen in the results in Section 6.4.6, the time-span is
sufficient to illustrate the power profile.

The card seems to have a basic caching mechanism causing significantly shorter delays if
the same command is repeated. To overcome this, the parameters for the command were
changed for each iteration.

In the contact-based setup, the trigger was placed on the I/O lines and manually adjusted
in the oscilloscope to fit the calculation period.

6.4. Measurements

The measurement setup was not an actual part of this thesis and unfortunately there was
no dedicated setup available for this task. However, some experiments had to be conducted
and as such several setups were tried, although a lack of expertise on this analogue area
limited the possibilities. For the experiments, there were many ideas about which current
or radiation to measure at which place. As a tiny electromagnetic probe was available,
even fine-grained local EM measurements (Section 6.4.5) were possible and a card that was
earlier dissolved in acetone allowed for direct measurements at the antenna of the contactless
smartcard’s chip (Section 6.4.4) .

A selection of these setups will now be described separately, along with its characteristics,
results and conclusions gained by using the framework that played a crucial role in the
analysis and processing of the raw data.

6.4.1. Preprocessing steps

Several different preprocessing steps were tried and combined to get the best results possible.
While the rasterization process is a necessary step, it also induces some additional errors as
the alignment is done on a period basis (40-80 samples) which still allows for a couple of
samples shift within one period. This shift tends to be significant, as the carrier amplitude

35

changes rapidly and peaks are usually short. Interpolation and rounding add to further
inaccuracy.

As such it turned out, that the most valuable data is found in the traces peaks, which
conforms with findings shown in Mangard et al. (2007). While rasterization makes sense for
traces that are less noisy, the actual useful method for experiments that still contain the
carrier signal turned out to be peak integration, which is a combination of the integration
procedure described in Section 4.2.5 and a following peak extraction. The integration step
basically acts as an average filter to reduce local high frequency noise. Due to the peak
extraction process no rasterization is necessary and as such no further errors are introduced
which decreases the overall variation of the trace. This approach is also slightly faster,
because rasterization needs to compute the squared difference to the reference pattern for
each offset in the trace. The power profile for the conducted operation will then be visible
on the average graphs which can also be used to assess the quality of the measured data.

6.4.2. Differential Probe

The first row of experiments was conducted using a differential probe at the reader’s antenna
at which voltage drops were assumed to be noticed if the DESFire card consumes more power.
This was also the easiest accessible location to place a probe since the proxmark3 board used
to conduct the experiments already provides these ports.

0 2000 4000 6000 8300
time in carrier cycles

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

vo
lta

ge

+2.095e2

filtered average peaks
average peaks

0 3000 6000 9264200

225

vo
lta

ge

Figure 6.2.: Differential probe (58132 traces). Average graph.

Figure 6.2 shows the average graph of the peak integration (n = 6) of all recorded traces.
As this graph contains a recurring pattern of a length of 16 carrier cycles, it can be assumed
that one operation on the card takes 16 carrier cycles. Consequently an according average
filter creates the blue line, which clearly shows the specific power profile of the card even
in this flawed measurement setup. However, the noise induced by the air interface and the
quantization is just too big to allow any DPA correlation. It stays zero even for plain- or
ciphertexts in multiple scenarios.

6.4.3. Simple Coil Probe

Since the EM probe in the lab is rather focused for very local measurements, a simple coil
of the chip’s size was used in another set of experiments on the same card to receive a
broader signal. Unfortunately some external factors influenced the measurement setup, as

36

is illustrated in the left part of Figure 6.3 showing the average of each trace. Consequently

0 10000 20000 30000 40000 50000
trace number

186

188

190

192

194

196

198

av
er

ag
e

vo
lta

ge
 o

f t
ra

ce
 p

ea
ks

traces peak-average over time

time

3 periods of different setups

differential probe
coil classic
coil java card

Figure 6.3.: Average of each trace of the simple coil measurement and zoomed power profile
of a clock cycle

for calculating the power profile, only the results of the traces ≥ 38500 were chosen. Since
the traces of these results do not follow the typical sinus pattern that was observed in all
other experiments (see the right part of Figure 6.3), it seems likely, that the probe does not
actually measure the power profile of the card. In the presence of these assumptions it is

0 1000 2000 3000 4000 5000 6000 7000
time in carrier cycles

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

vo
lta

ge

+1.888e2

filtered average peaks
average peaks

Figure 6.4.: Simple Coil Probe. Average graph.

no surprise, that the graph in Figure 6.4 does not mimic the power profile of the differential
probe experiment at all. As a single period’s peak is very short, instead of peak integration
only peak extraction was used to create the power profile of the figure.

6.4.4. Differential Probe at Smartcard’s Antenna

The lab provided a raw smartcard chip, so that the probe could be attached directly to the
card’s antenna. The only available such chip was a Mifare Classic card, so these experiments
were not conducted with the DESFire card. The experiments were executed for two different
setups: In the first, the probe was directly attached to the antenna, whereas the second
experiment had an additional resistor of 10Ω implemented, since typically measuring the
voltage drop across a resistor is used to measure the power consumption of the device.

37

0 500 1000 1500 2000
time in carrier cycles

218.0

218.2

218.4

218.6

218.8

219.0

219.2

219.4

vo
lta

ge

filtered average peaks
average peaks

+2.181e2

Figure 6.5.: Diffprobe at antenna (16635 traces). Average graph.

The results were obtained using the same method as for the differential probe (Section 6.4.2).
Accordingly the graph in Figure 6.5 shows a comparatively clear power profile of a Mifare
Classic chip during authentication. Again, a recurring pattern of 8 carrier cycles length can
be found (the zoomed region in the figure is to make this pattern more visible). Applying
an average filter of this length produces the blue bar.

0 500 1000 1500
time in carrier cycles

0.00

0.05

0.10

0.15

0.20

0.25

0.30

vo
lta

ge

+1.728e2

filtered average peaks
average peaks

Figure 6.6.: Diffprobe at antenna with resistor (20500 traces). Average graph.

The results of the second experiment, in which an additional resistor was used, are illustrated
in Figure 6.6 which is a very clear indication for a failed measurement setup: The individual
differences are much smaller and have a huge noise component. No clear power profile can be
seen, no pattern is visible. Measuring without a resistor therefore yields the better results,
still they are not sufficient to calculate a correlation on the plaintext.

6.4.5. Local EM Probe

Another set of experiments tried to measure the EM radiation with a high precision EM
probe. Since no further information was available about the chip, there was no clue about
where to measure exactly, so the chip was divided into four quadrants and a new set of
measurements (with about 26,000 traces each) was conducted for each quadrant.

38

0 2000 4000 6000 8000
time in carrier cycles

vo
lta

ge

A (bottom)
B
C
D (top)
A (without filter)

Figure 6.7.: Local EM probes: 4 quadrants. Average graphs.

Figure 6.7 shows the four power traces acquired with the EM probe in the four quadrants of
the chip. The offset has been slightly adjusted to fit the figure. All traces show a common
generic profile. However, they differ in details. Some operations are better visible in one
trace, whereas nearly invisible in another (e.g. the pattern in trace B at offset 7500). This
gives a clue on the location of functionality on the chip. One can even guess about certain
functionality based on the visual pattern. For example, the attacker will be very much
interested in locating the 3DES engine. As no clear pattern for a 3 ·16 round can be located,
it can be assumed, that the chip operates in single DES mode, because certain keys like the
one in the experiments allow this mode, conforming with the protocol that was described in
Section 5.3.1. The most likely location for such a 16 round pattern will be the one around
offset 4000.

6.4.6. Comparison Experiment

In order to better assess the quality of the measurements, a row of experiments was conducted
for a dual interface smartcard. Numerous traces where recorded using the simple coil probe
described in Section 6.4.3. Additionally, a couple of reference traces were recorded, measuring
the power consumption in a contact-based setup. As the dual interface card is protected
against DPA attacks, even in the contact-based setup, only a very bare power profile is
visible. However, recognizing this profile in the EM results would confirm, that one actually
measures the power consumption, and allows to assess the quality.

Figures 6.8 and 6.9 make clear, that the power traces leaked through multiple measurements
on the EM channel are strongly related to the actual power consumption of the card, as
a couple of recurring key patterns can be recognized. The graphs also indicate, that a
relatively big difference in the actual power trace (≈ 25 unit points) only reflects about
0.025 unit points in the EM trace, which is about factor 40 below the resolution of the
oscilloscope, thus subject to serious quantization errors not to mention additional noise.

This already gives the very specific hint, that the plaintext correlations could not be achieved
in any of the experiments, because the measurement setups are just not good enough. In
the next section, the quality requirements will be detailed further.

39

0 10000 20000 30000 40000 50000
time in carrier cycles

0.00

0.05

0.10

0.15

0.20

vo
lta

ge

+1.303e2

filtered average peaks
average peaks

Figure 6.8.: Simple EM probe: power profile java card. Average Graph.

0 1 2 3 4 5 6 7 8
time in ms

60

80

100

120

140

160

vo
lta

ge

filtered power trace
power trace

Figure 6.9.: Wired power profile java card. Single Trace.

6.4.7. Simulated Experiments

In order to assess and verify the capabilities of the framework and to find out in which range
of parameters the system works, a set of simulated experiments was conducted. A generator
for simulated traces is used to generate these traces under varying assumptions. Each trace
consists of 50 periods of 40 samples each, based on Equation 6.1. The leakage current cleak
is a multiplier for the hamming weight of the data hw(dt). It is modulated onto the carrier
signal ccarrier, with only a small amount of normally distributed noise ni with a strength of
2% of the carrier signal. With each period, the leakage current is increased.

ti = (cleak · hw(dt) + ccarrier) · sin
(
i2π

40

)
+ ni (6.1)

With the known model, the hypothesis for the correlations are again the hamming weights
of the data that have been modulated onto the trace. For reference, the hamming weights of
random data were calculated as an additional hypothesis which is also shown in the following
graphs.

10.000 traces were generated and stored as unsigned chars, which includes the additional
quantization noise. Afterwards, the correlations were computed and plotted in the graph

40

in Figure 6.10 which illustrates, that the desired correlation is clearly visible (and distin-
guishable from the random correlation), once the leakage current reaches about 0.5% of the
carrier strength.

0.0% 0.1% 0.2% 0.5% 0.9% 1.4% 2.1%
leakage strength in percentage of carrier strength

0.3

0.2

0.1

0.0

0.1

0.2

0.3

co
rr

el
at

io
n

averaged trace correlation
raw correlation
random correlation

Figure 6.10.: Fake experiment correlations for varying leakage strengths

In a second experiment, the noise component was varied, while the leakage component is
fixed to 4% of the carrier signal, a strength that already yielded a strong correlation for
the above experiment. Again Figure 6.11 shows the calculated correlations after processing

33.3% 28.3% 23.3% 18.3% 13.3% 8.3% 3.3%
noise level in percentage of carrier strength

0.10

0.05

0.00

0.05

0.10

co
rr

el
at

io
n

averaged trace correlation
raw trace correlation
random correlation

Figure 6.11.: Fake experiment correlations for varying noise levels

10.000 traces. As shown there, if the noise level is stronger than 8% of the carrier signal, it
is very hard to get a clear correlation even if the leakage signal is very strong. Also the best
correlation is achieved by using an averaging filter of the size of half a period. This is due to
the modulation of the signal onto the carrier, where each sample adds a part of the leakage
current, while the normally distributed noise is reduced with each additional sample added
to the calculation.

Of course these fake experiments have significant flaws, are based on random assumptions
and cannot possibly mimic the real world completely. However, they were never intended to
do so, but still provide at least hints concerning requirements for future experiments while
they also help to classify the other experiments that were already conducted. Combined
with the results of the comparison experiment of the previous section, it becomes clear, that

41

none of the above measurement setups provide the necessary resolution to actually measure
data dependent differences in the power profile.

6.5. Future Experiment Ideas

Unfortunately, time and know-how constraints did not permit to conduct experiments with
every single idea. However, these will very likely yield much better results than above
experiments and might very well be suited to execute an actual DPA attack on contactless
smartcards.

The main reason for failure of above experiments is the presence of the carrier signal. If it
can be reduced, the results will very likely improve. There are several ways to reduce or
even remove the carrier completely:

Analogue filtering Kasper et al. (2009) conducted a similar experiment and used some ana-
logue filtering process to remove the carrier. Basically they amplified the reader’s
13.56MHz oscillator signal and performed an analogue subtraction of a phase-shifted
version of the signal and the measure data (see Figure 6.12). Using this method, the
oscilloscope’s quantization range could be used much better.

Amplify/
Attenuate

Phase Shift

Subtract &
Amplify

Δφ

Figure 6.12.: Analogue filtering as performed by Kasper et al. (2009)

Rectification An analogue rectifier might be used to overcome some of the quantization
errors, especially in conjunction with a capacitor that works as a simple analogue
smoothing filter.

Antenna placement If one has access to a raw chip (e.g. by resolving the card’s plastic
in acetone) one can probably extend the antennas wires and place the antenna far
away from the chip. EM measurements at the chip will then only show a significantly
reduced carrier signal.

42

CHAPTER

SEVEN

CLOSEUP

In the previous chapters, the foundations on conducting side-channel attacks on RFID sys-
tems were shown along with the workflow process that is assisted by the framework in order
to effectively analyze and evaluate the results. The theoretical background was explained,
protocols were exemplarily described to enable the execution of actual experiments, which
eventually provided a good confidentiality concerning the effectiveness and practical usability
of the framework. Now a last look back will evaluate the achievements and the practicability
of DPA attacks RFID smartcards.

7.1. Toolsuite Evaluation

With the initially available tools, trace processing was a very hard and time-consuming task.
For example, it took multiple days to experiment with the preprocessing to reveal the power
trace of the differential probe setup (Section 6.4.2). Now, the toolsuite allows to try multiple
preprocessing steps at once, while processing traces simultaneously on multiple processors
without any huge memory requirements. The analysis workflows can easily be programmed
and combined, so that the programming tasks are accelerated. This is in contrast to the
old C utilities that often required a lot of boilerplate code for management tasks and were
not at all flexible. Also the actual usage of the utilities was inefficient and painful, as some
descriptions in Section 4.2 already suggested. Furthermore, the overall speed of the execution
of preprocessing and analysis steps of a workflow has been drastically accelerated by avoiding
the disk storage of intermediate results.

The inefficient and painful use of utilities changed with the framework: For the differential
probe experiment mentioned above, a generic analysis workflow can be used or a new one
can be written within minutes. The actual computation to get the results roughly takes an
hour depending on the number of traces. As such, one spends more time actually evaluating
the results than waiting for their calculation to finish.

The framework is stable and fast, because the computationally expensive routines have been
implemented in a C module with multiprocessing in mind from the beginning. Furthermore,
it is easy to extend the framework and add new functionality: With a couple of lines of code,
one can create a new type-independent processing function, the actual usage of which is a
piece of cake.

Although none of the cryptographic components of the cards could be attacked to due mea-
surement setup problems, using the framework, specific power profiles could be acquired. Ad-
ditionally the framework’s functionality could be verified by the simulated data experiments.
Together with the comparison experiment it provided evidence for the lack of exploitable
signal in the recorded traces of these basic measurement setups.

43

The targeted cards did not have any attack surface that would allow to execute time-based
side-channel attacks, as such the frameworks capabilities to support these attack styles could
not be evaluated. However, simple time-based SCAs are very easy to implement and do not
need the support of the framework. The more complex differential attack styles do not differ
too much from differential power analysis attacks and can therefore use the framework’s
functionality.

The proxmark3 was preferred over other RFID readers for a variety of reasons. A custom
protocol has been implemented on this board and it could be shown, that the tool is a good
choice for such experiments, fulfilled all requirements, and enables a very accurate and easy
placement of trigger signals. This is not at last due to the open architecture and firmware
of the board.

A fortunate side-effect of the framework is, that most functionality is not limited to use in
RFID side-channel attacks, but can also be used in contact-based setups and might enhance
processing and workflows there as well.

7.2. DPA Attacks on RFID in Practice

Since the thesis did not focus on the experiment setups, it is unfortunate that none of the
basic setups were sufficiently accurate to reveal a correlation to the plaintext. However, other
research succeeded with this task. Notable are Kasper et al. (2009), who used a measurement
setup with an analogue filter to actually reveal the DES key of a contactless smartcard. They
also succeeded in attaining a plaintext correlation on only a couple of thousand traces without
an analogue filter. Although the same preprocessing and filtering was applied to the traces
of the measurements in this thesis, the results could not be reproduced: neither the filtered
power trace nor the correlation results. While it can only be speculated about the reasons,
the most likely explanation is an initially better measurement setup e.g. due to the probe’s
placement at a special position.

Nevertheless, as their experiments showed, these cards are vulnerable against attacks, al-
though the threshold to mount them is raised significantly. Because no faults were revealed
on the protocol or cryptographic level, side-channel attacks are one of the only means of
attacking these cards. Mounting such attacks requires special resources, but it still seems
practical for a sufficiently motivated attacker.

While DPA attacks are a very powerful tool, some ideas for countermeasures were already
presented in Section 2.2.4 and the literature (i.e. Mangard et al., 2007) suggests many ways on
how to mitigate the thread. It should not be assumed, that RFID systems are automatically
protected against DPA attacks due to the high noise induced by the carrier. Several methods
to reduce this effect seem practical and one should consequently presume, that contactless
smartcards are just as vulnerable as their contact-based siblings.

44

LIST OF FIGURES

2.1. Power profile of a AES encryption performed by a microcontroller (Mangard
et al., 2007) . 4

2.2. Power profile of distinguishable square (S) and multiply (M) operations (based
on Rohatgi, 2010) . 6

2.3. Hamming weight correlation without (left) and with an sbox (right) 11

3.1. Inductive coupling of a RFID tag from the energy of the magnetic field gen-
erated by the reader (Finkenzeller, 2003) . 14

3.2. Sample RFID trace showing modulation from reader to tag (left) and vice-
versa (right) . 15

3.3. Packet frame format (ISO 14443-3) . 15

4.1. Architecture of core functionality . 23

5.1. Difference between DESFire specific DES operation (left) and the normal one
(right) . 28

5.2. Standard and DESFire specific Cipher Block Chaining modes 28
5.3. Authentication procedure in the Mifare DESFire protocol 29
5.4. Authentication procedure in the Mifare Classic protocol 32

6.1. Illustration of the general experiment setup 34
6.2. Differential probe (58132 traces). Average graph. 36
6.3. Average of each trace of the simple coil measurement and zoomed power profile

of a clock cycle . 37
6.4. Simple Coil Probe. Average graph. 37
6.5. Diffprobe at antenna (16635 traces). Average graph. 38
6.6. Diffprobe at antenna with resistor (20500 traces). Average graph. 38
6.7. Local EM probes: 4 quadrants. Average graphs. 39
6.8. Simple EM probe: power profile java card. Average Graph. 40
6.9. Wired power profile java card. Single Trace. 40
6.10. Fake experiment correlations for varying leakage strengths 41
6.11. Fake experiment correlations for varying noise levels 41
6.12. Analogue filtering as performed by Kasper et al. (2009) 42

45

46

BIBLIOGRAPHY

Akkar and Giraud 2001
Akkar, M. L. ; Giraud, C.: An implementation of DES and AES, secure against some
attacks. In: Cryptographic Hardware and Embedded Systems–CHES 2001. Paris, France
: Springer, 2001, p. 309–318

Caron 1999
Caron, Jean-Sébastien: Resistance against Differential Power Analysis for El- liptic
Curve Cryptosystems. In: Cryptographic Hardware and Embedded Systems–CHES’99,
1st International Workshop. Worcester, MA, USA : Springer, 1999, p. 724–724

Finkenzeller 2003
Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless
Smart Cards and Identification. John Wiley and Sons Inc, 2003

Garcia et al. 2008
Garcia, F. ; Koning Gans, G. de ; Muijrers, R. ; Van Rossum, P. ; Verdult, R.
; Schreur, R. ; Jacobs, B.: Dismantling MIFARE Classic. (2008), 97-114. http://

packetstorm.rlz.cl/papers/wireless/2008-esorics.pdf. – Presented at ESORICS
2008

Garcia et al. 2009
Garcia, F. D. ; Rossum, P. ; Verdult, R. ; Schreur, R. W.: Wirelessly pick-
pocketing a Mifare Classic card. In: Proceddings of the 2009 30th IEEE Symposium
on Security and Privacy IEEE, 2009, p. 3–15. – http://www.cs.umd.edu/~jkatz/

security/downloads/Mifare3.pdf

ISO 14443 2000
Identification cards – Contactless Integrated Circuit(s) Cards – Proximity Cards. 2000

ISO 7816 1997
Identification Cards – Integrated Circuit Cards with Contacts. 1997

Kasper et al. 2009
Kasper, T. ; Oswald, D. ; Paar, C.: EM Side-Channel Attacks on Commercial Con-
tactless Smartcards Using Low-Cost Equipment. In: Information Security Applications
(2009), p. 79–93

Kocher 1996
Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Advances in Cryptology–CRYPTO’96 Springer, 1996, p. 104–113. –
http://www.cryptography.com/public/pdf/TimingAttacks.pdf

47

http://packetstorm.rlz.cl/papers/wireless/2008-esorics.pdf
http://packetstorm.rlz.cl/papers/wireless/2008-esorics.pdf
http://www.cs.umd.edu/~jkatz/security/downloads/Mifare3.pdf
http://www.cs.umd.edu/~jkatz/security/downloads/Mifare3.pdf
http://www.cryptography.com/public/pdf/TimingAttacks.pdf

Kocher et al. 1999
Kocher, P. C. ; Jae, J. ; Jun, B.: Differential Power Analysis. In: Advances in Cryp-
tology: Proceedings of CRYPTO99 (1999). http://www.cryptography.com/public/

pdf/DPA.pdf

de Koning Gans et al. 2008
Koning Gans, G. de ; Hoepman, J. H. ; Garcia, F.: A Practical Attack on the
MIFARE Classic. In: Smart Card Research and Advanced Applications (2008), p. 267–
282

Mangard et al. 2007
Mangard, S. ; Oswald, E. ; Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, 2007

Messerges et al. 1999
Messerges, T. ; Dabbish, E. ; Sloan, R.: Power Analysis Attacks of Modular
Exponentiation in Smartcards. In: Cryptographic Hardware and Embedded Systems–
CHES’99, 1st International Workshop. Worcester, MA, USA : Springer, 1999, p. 724–
724

Nohl et al. 2008
Nohl, K. ; Evans, D. ; Starbug, S. ; Plötz, H.: Reverse-engineering a cryptographic
RFID tag. (2008), 185-193. http://www.cs.virginia.edu/~evans/pubs/usenix08/

usenix08.pdf

Nokia 2008
Nokia: Series 40 Nokia 6212 NFC SDK. http://www.forum.nokia.com/info/

sw.nokia.com/id/5bcaee40-d2b2-4595-b5b5-4833d6a4cda1/S40_Nokia_6212_NFC_

SDK.html. Version: 2008

Plötz and Nohl 2009a
Plötz, Henryk ; Nohl, Karsten: Breaking Hitag2. (2009). https://har2009.org/

program/events/135.en.html

Plötz and Nohl 2009b
Plötz, Henryk ; Nohl, Karsten: Legic Prime: Obscurity in Depth. (2009),
December. http://events.ccc.de/congress/2009/Fahrplan/attachments/1506_

legic-slides.pdf. – Presented at 26. Chaos Communication Congress

Ridrix 2009a
Ridrix: Mifare Desfire communication example. In: Ridrix’s Blog (2009). http:

//ridrix.wordpress.com/2009/09/19/mifare-desfire-communication-example/

Ridrix 2009b
Ridrix: t:kort public transportation card explorations. In:
Ridrix’s Blog (2009). http://ridrix.wordpress.com/2009/09/20/

tkort-public-transportation-card-explorations/

Rohatgi 2010
Rohatgi, Pankaj: Protecting FPGAs from Power Analysis. In: EE
Times (2010). http://www.eetimes.com/design/programmable-logic/4199399/

Protecting-FPGAs-from-power-analysis

Schindler 2000
Schindler, W.: A timing attack against RSA with the chinese remainder theorem. In:
Cryptographic Hardware and Embedded Systems—CHES 2000. Worcester, MA, USA,
2000, p. 109–124

48

http://www.cryptography.com/public/pdf/DPA.pdf
http://www.cryptography.com/public/pdf/DPA.pdf
http://www.cs.virginia.edu/~evans/pubs/usenix08/usenix08.pdf
http://www.cs.virginia.edu/~evans/pubs/usenix08/usenix08.pdf
http://www.forum.nokia.com/info/sw.nokia.com/id/5bcaee40-d2b2-4595-b5b5-4833d6a4cda1/S40_Nokia_6212_NFC_SDK.html
http://www.forum.nokia.com/info/sw.nokia.com/id/5bcaee40-d2b2-4595-b5b5-4833d6a4cda1/S40_Nokia_6212_NFC_SDK.html
http://www.forum.nokia.com/info/sw.nokia.com/id/5bcaee40-d2b2-4595-b5b5-4833d6a4cda1/S40_Nokia_6212_NFC_SDK.html
https://har2009.org/program/events/135.en.html
https://har2009.org/program/events/135.en.html
http://events.ccc.de/congress/2009/Fahrplan/attachments/1506_legic-slides.pdf
http://events.ccc.de/congress/2009/Fahrplan/attachments/1506_legic-slides.pdf
http://ridrix.wordpress.com/2009/09/19/mifare-desfire-communication-example/
http://ridrix.wordpress.com/2009/09/19/mifare-desfire-communication-example/
http://ridrix.wordpress.com/2009/09/20/tkort-public-transportation-card-explorations/
http://ridrix.wordpress.com/2009/09/20/tkort-public-transportation-card-explorations/
http://www.eetimes.com/design/programmable-logic/4199399/Protecting-FPGAs-from-power-analysis
http://www.eetimes.com/design/programmable-logic/4199399/Protecting-FPGAs-from-power-analysis

APPENDIX

A

FRAMEWORK DOCUMENTATION
(EXCERPT)

A.1. Preprocessor

The preprocessor provides a variety of functions to assist quick loading and processing of
traces. A trace is represented by a preprocessor.Buffer with a certain data type and can
be stored (preprocessor.write file()) or read (preprocessor.load file()) from files
on the harddrive.

The system has been designed to be more or less type-independent, allowing to process a trace
of a certain type while outputing to another data type. This makes sense for example for the
preprocessor.integrate() function, that often produces values that are out of range of
the source data type. Accordingly, the preprocessor.average() function typically outputs
floats, so a precission loss will occur unless a conversion is requested. Nearly all functions
thus accept a dst type parameter, that controls the output data type and defaults to zero
and is then set to the same data type as the input data type.

To see which types have been compiled into this module run:

$ pydoc dpalib.preprocessor.types

class AverageCounter()

The AverageCounter processes traces sequentially and calculates a average and vari-
ance trace based on the input traces.

>>> a = AverageCounter(size=5, type=types.float)

>>> a.add_trace(buffer_from_list(types.uint8_t, [0, 1, 2, 3, 4]))

>>> a.add_trace(buffer_from_list(types.uint8_t, [2, 2, 2, 2, 2]))

>>> len(a)

2

>>> avg, var = a.get_buf()

>>> print avg

[1.0, 1.5, 2.0, 2.5, 3.0]

>>> print var

[1.0, 0.25, 0.0, 0.25, 1.0]

get buf

get buf() -> (avg buf, var buf)

49

returns one float buffer for Buffer the average and one for the variance of all
processed traces

class Buffer()

Provides a interface for wrapping and keeping track of native C buffers

>>> buf_a = new_buffer(5, types.int8_t)

>>> buf_a[0] = 255

>>> print buf_a[0]

-1

>>> buf_b = buffer_from_list(types.float, [1.5, 2.25, 3.75])

>>> print buf_b.as_list()

[1.5, 2.25, 3.75]

as list

returns a list representation of the whole Buffer

zero

fills the whole buffer with zeros

analyze()

analyze(buf, include variance=True) -> (average, variance, min, max)

calculates above characteristics for the Buffer buf

If variance is not needed, calculation is slightly quicker.

average()

average(buf, n, skip=1, scale=1, dst type=types.void) -> Buffer

average n samples of Buffer buf, the result is scaled by scale

skip is a skip-divisor. i.e. skip=2 returns every 2nd result sample

If signed scale is set, a signed scale will be performed with the value signed scale as
the virtual zero (i.e. y = (x - signed scale) * scale + signed scale). A good value for
signed scale is thus the average of the trace.

By explicitly specifying a dst type the result Buffer is forced to this type.

buffer from list()

buffer from list(type, list) -> Buffer

allocates a new Buffer and fills its values with the ones found in list

diff()

diff(a, b, absolute=True, dst type=types.void) -> Buffer

calculates abs(a[i] - b[i]) for each sample of Buffer a and b, returns a new Buffer of
length min(len(a), len(b))

If the output Buffer type is unsigned and absolute is not set the Buffer will be shifted
by max {datatype}/2.

By explicitly specifying a dst type the result Buffer is forced to this type.

filter()

filter(buf, filter data, scale=1, dst type=types.void) -> Buffer

applies a FIR filter to the Buffer buf

50

filter data is a types.int8 t Buffer containing the filter coefficients, which are auto-
matically scaled by 1/sum(filter data)

The result can be scaled by scale.

If signed scale is set, a signed scale will be performed with the value signed scale as
the virtual zero (i.e. y = (x - signed scale) * scale + signed scale). A good value for
signed scale is thus the average of the trace

By explicitly specifying a dst type the result Buffer is forced to this type.

free buffer()

free buffer(buf) – explicitly free an allocated Buffer. This is usually not needed!

integrate()

integrate(buf, n, dst type=types.void) -> Buffer

builds the sum of n samples each

By explicitly specifying a dst type the result Buffer is forced to this type.

load file()

load file(filename, type, length=0) -> Buffer

reads a file into memory returning a Buffer

a non-zero length specifies the maximum amounts of bytes read

new buffer()

new buffer(length, type, ptr=0) allocate a new Buffer or generate one from an existing
ptr

normalize()

normalize(buf, min=NaN, max=NaN, adjust factor=1.2, dst type=types.void) ->
Buffer

normalizes a trace with values in]min, max[to fit the whole range of the dst type

If min and max are not set, they will be computed from the current trace with a border
of adjust factor (e.g. [0, 1] is adjusted to [-0.2, 1.2]).

By explicitly specifying a dst type the result Buffer is forced to this type.

peak extract()

peak extract(buf, avg=-1, std dev=-1, break count=0, break length=0,
dst type=types.void) -> Buffer

extracts high peaks from Buffer buf

If avg and std dev are not set they are calculated in an analysis phase first.

break count specifies the number of pause at the beginning of the trace

If traces are not aligned in the time domain, but include a distinct pattern (i.e.
a pause in signal), this can be used to align them.

break length specifies the minimum length of each pause in samples

By explicitly specifying a dst type the result Buffer is forced to this type.

raster()

raster(buf, edge, period, dst type=types.void) -> Buffer

51

aligns a given trace buf using the pattern defined by edge

edge is a buffer of the same type as buf

period specifies the length of a period in samples each period in Buffer buf is linearly
interpolated to fit the length specified by period

See also raster config() to specify advanced attributes such as trigger values and
expected pause intervals.

By explicitly specifying a dst type the result Buffer is forced to this type.

rectify()

rectify(buf, avg, dst type=types.void) -> Buffer

rectifies a traces, by calculating the absolute difference to avg

By explicitly specifying a dst type the result Buffer is forced to this type.

reorder()

reorder(buf, period, dst type=types.void) -> Buffer

reorders a rasterized Buffer buf so that

�period buffers are created, each containing only one sample of each period i.e. the
buffer contains only the first sample of each period and so on

�all buffers are concatenated again

By explicitly specifying a dst type the result Buffer is forced to this type.

>>> reorder(buffer_from_list(types.uint8_t, [1,2,3,4,5,6,7,8,9,10,11]), 3)

[1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9]

>>> reorder(buffer_from_list(types.uint8_t, [1,2,3,4,5,6,7,8,9,10]), 3)

[1, 4, 7, 10, 2, 5, 8, 3, 6, 9]

scale()

scale(buf, scale=1.0, signed scale=0, dst type=types.void) -> Buffer

scales buffers values by scale (i.e. buf[i] *= scale)

If signed scale is set, a signed scale will be performed with the value signed scale as
the virtual zero (i.e. y = (x - signed scale) * scale + signed scale). A good value for
signed scale is thus the average of the trace.

By explicitly specifying a dst type the result Buffer is forced to this type.

spline()

spline(buf, target size, dst type=types.void) -> Buffer

linearly interpolates a Buffer buf to fit a given length

For reasons of efficiency this does not do averaging, if size is significantly smaller than
buf ’s size.

spline interpolation is not yet implemented

By explicitly specifying a dst type the result Buffer is forced to this type.

square()

square(buf, dst type=types.void) -> Buffer

calculates the square of each value in Buffer buf

52

By explicitly specifying a dst type the result Buffer is forced to this type.

write file()

write file(filename, buf, length=0)

dumps the Buffer buf to a file

a non-zero length specifies the maximum amounts of bytes written

A.2. Correlation

class Correlator()

Correlator(samples, traces, keys)

creates a new Correlator instance used to rapidly calculate correlations in a DPA
scenario

samples is the number of samples in each trace, i.e. the trace length

traces is the total number of traces to be processed

keys is the number of hypothesis

>>> c = Correlator(2, 3, 1) #create a new correlator

>>> c.hypo[0] = 5 #calculate a hypothesis for each trace

>>> c.hypo[1] = 4

>>> c.hypo[2] = 3

>>> c.preprocess() #preprocess the hypothesis

>>> from preprocessor import buffer_from_list

>>> c.add_trace(buffer_from_list(types.uint8_t, [10, 0]))

>>> c.add_trace(buffer_from_list(types.uint8_t, [8, 30]))

>>> c.add_trace(buffer_from_list(types.uint8_t, [6, 15]))

>>> c.update_matrix() #calculate the correlation

>>> round(c.matrix[0], 2)

1.0

>>> round(c.matrix[1], 2)

-0.5

add trace

add trace(buf, idx=-1)

processes a trace (dpalib.preprocessor.Buffer buf) for the Correlator by
updating intermediate values

if idx is set, the trace will be added as trace number idx allowing to add traces
in arbitrary order

preprocess

preprocesses the hypothesis. MUST be called before adding the first trace

update matrix

updates the correlation matrix. MUST be called before accessing the matrix

dump matrix()

dump a octave readable form of the Correlator.matrix m to the file-descriptor f,
assuming that m is a keys x samples matrix

53

A.3. Workflow

class DPAWorkflow(info dict={}, count=None, base path=’.’)
A helper class for a complete trace analysis workflow

Processes a set of traces in a series of analysis steps. Each step is executed by a trace
processor. See the dpalib.processors module for details.

In a profiling phase, 100 input traces will be processed sequentially
to experimentally determine boundaries and lengths (e.g. for the
dpalib.processors.AverageCountProcessor). This phase is necessary, be-
cause several processors require further information. For example, the
dpalib.processors.NormalizeProcessor needs information on the minimum
and maximum of each trace. However, these values need to be constant for the
whole set of traces as the output of the processor would otherwise be useless. Other
processors like the peak-extraction processor need information on traces’ average
and variance which typically do not vary much in a set of traces. Therefore, such
information is pre-calculated using a couple of sample traces in a profiling phase. This
functionality is supported by respective capabilities of the individual processor classes.

The number of traces to profile can be set with the profile size attribute. A record
information dictionary can be passed to the module, which contains information to be
used by the seperate processors, but the following keys are also used:

errors a list of trace numbers to ignore. These traces will not be read or processed

profile traces a list of traces that are meant to be used for additional profiling if the
initial 100 are not sufficient

trace type the data type of input traces. Default:
dpalib.preprocessor.types.uint8 t

In the actual processing phase the traces are processed in parallel using all available
cores if the corresponding trace processors are implemented to release the GIL for
the actual processing. This is the case for the preprocessing toolsuite including the
correlator.

See this source file for a more practical and thorough application of this class.

>>> w = DPAWorkflow(count=100)

>>> w.processors = [TraceProcessor()] # the TraceProcessor() doesn’t modify anything

>>> w.process()

path iter(in path, out path=None)

process()

processes the active trace set

See DPAWorkflow for a generic overview of provided functionality.

store avg(avg, name=”)

A.4. Processors

A collection of trace processors for use in a dpalib.workflow.DPAWorkflow.

54

A trace processor can be easily written by inheriting from TraceProcessor:

>>> class CustomProcessor(TraceProcessor):

... def process(trace):

... return custom_processing_function(trace)

Further processors can be listed with:

$ pydoc dpalib.processors

class AverageCountProcessor(callback=<function <lambda> at 0x3247500>, **kwargs)
Accumulates traces to create a average and variance trace

Take an argument:

callback a function that is called after calculation of the average has been finished

callback(avg, var, name)

where name is the name of the referenced processor

static averagize(processors, callback=None, **kwargs)
takes a list of processors and creates a AverageCountProcessor instance for each
one

finalize()

calculates the average and calls the callback function

class CombinedProcessor(a, b, name=None)
A helper class to provide the chaining functionality for a TraceProcessor

class CorrelationProcessor(correlator=None, **kwargs)
Adds each processed trace to the correlation module

correlator a dpalib.correlation.Correlator instance that has already been initial-
ized with hypothesis and preprocessed

correlations()

retrieves the correlations after processing finished, by cutting the correlation ma-
trix into corresponding chunks

class NormalizeProcessor(dst type=0, ref=None, save=False, name=None)
Normalizes trace data globally to fit a smaller data type.

This is useful if trace data does not fit a small data type without further processing.
The NormalizeProcessor determines min and max values of the traces in a profiling
stage and fits them into the new data type.

A common application might be:

>>> NormalizeProcessor(dst_type=types.uint8_t)

class PeakProcessor(break length=0, break count=0, *args, **kwargs)
Performs peak extraction on the trace.

Peak extraction needs information on average and variance of the trace. The values
are determined in a profiling stage.

55

class RasterizeProcessor(edge, period, trigger=150, pause trigger=1100, min pause=0,
max pause=0, header size=128, **kwargs)

A processor for rasterization of traces. Please consult the thesis for an exact descrip-
tion.

Uses a pattern defined by dpalib.preprocessor.Buffer edge to make each period
the same length (period).

Further options can be specified:

trigger edge-comparism threshhold that starts search for a local minimum difference

pause trigger number of samples to pass without a trigger match, that causes indica-
tion for a data pause. This can be used to align the start of traces at pauses in
the trace

min pause the minimum amount of pauses that MUST occur

max pause the maximum amount of pauses that are allowed to occur before assuming
an error

header size number of samples to skip from the beginning of the trace

FIXME: there can only ever be one active configuration of this running at the same
time

class RectifyProcessor(*args, **kwargs)
Rectifies a trace

class TraceProcessor(dst type=0, ref=None, save=False, name=None)
A no-op trace processor.

This is a simple base class for other trace processors doing actual computations, that
should inherit from this class and overwrite the process() method.

Trace processors can be chained:

>>> a = TraceProcessor()

>>> b = TraceProcessor()

>>> c = a(b)

c.process(buf) is thus equivalent to a.process(b.process(buf))

finalize()

finishes pending tasks

get samples()

returns the estimated number of samples of a output trace based on the profiling
phase

process(trace, idx=-1)
processes the dpalib.preprocessor.Buffer trace and returns the modified ver-
sion

profile(trace)
performs profiling steps (such as finding min/max values) for the
dpalib.preprocessor.Buffer trace

class VoidProcessor(dst type=0, ref=None, save=False, name=None)
Base class for processors not producing new traces

56

	Thematic introduction
	Methodology
	Overview
	Side-Channel Attacks
	Timing Analysis
	Power Analysis
	The power model
	Simple Power Analysis
	Differential Power Analysis
	Countermeasures

	Hypothesis Generation

	RFID
	Overview
	Communication and Powering
	Modulation and Transmission Protocols
	ISO 14443

	Framework Implementation
	Workflow Overview
	Preprocessing Toolsuite and Visualisation
	Requirements
	Rasterization / Alignment
	Analysis and normalization
	Average and Variance Graphs
	Simple Filters
	FFT filters

	Correlation
	Framework Architecture
	Type Independence
	Implementation
	Correlation Workflow
	Highlevel Workflow

	Preparation
	Tool Selection
	Attack Targets
	Target Protocols
	Mifare DESFire
	Mifare Classic
	JCOP

	Experiments and Results
	Timing Experiments
	Measurement Setup Overview
	Target Protocols and Trigger Placement
	Mifare Classic
	Mifare DESFire
	JCOP

	Measurements
	Preprocessing steps
	Differential Probe
	Simple Coil Probe
	Differential Probe at Smartcard’s Antenna
	Local EM Probe
	Comparison Experiment
	Simulated Experiments

	Future Experiment Ideas

	Closeup
	Toolsuite Evaluation
	DPA Attacks on RFID in Practice

	List of Figures
	Bibliography
	Framework Documentation (Excerpt)
	Preprocessor
	Correlation
	Workflow
	Processors

